Skip to main content

Advertisement

Log in

Radium-223 dichloride in clinical practice: a review

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The onset of skeletal metastases is typical of advanced-stage prostate cancer and requires a multidisciplinary approach to alleviate bone pain and try to delay disease progression. The current therapeutic armamentarium includes conventional analgesics, chemotherapeutic agents, immunotherapy, androgen-deprivation therapy, osteoclast inhibitors (bisphosphonates, denosumab), surgical interventions, external-beam radiotherapy and radionuclide metabolic therapy. Many studies in recent decades have demonstrated the efficacy of various radiopharmaceuticals, including strontium-89 and samarium-153, for palliation of pain from diffuse skeletal metastases, but no significant benefit in terms of disease progression and overall survival has been shown. The therapeutic landscape of metastatic skeletal cancer significantly changed after the introduction of radium-223, the first bone-homing radiopharmaceutical with disease-modifying properties. In this paper we extensively review the literature on the use of radium-223 dichloride in metastatic castration-resistant prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Miller DC, Hafez KS, Stewart A, et al. Prostate carcinoma presentation, diagnosis, and staging: an update form the National Cancer Data Base. Cancer. 2003;98:1169–78.

    Article  PubMed  Google Scholar 

  3. Mottet N, Bellmunt J, Briers E, et al. Guidelines on prostate cancer. European Association of Urology; 2015. Available at: http://uroweb.org/wp-content/uploads/09-Prostate-Cancer_LR.pdf. Accessed 19 April 2016.

  4. Gartrell BA, Coleman R, Efstathiou E, et al. Metastatic prostate cancer and the bone: significance and therapeutic options. Eur Urol. 2015;68:850–8. doi:10.1016/j.eururo.2015.06.039.

    Article  PubMed  Google Scholar 

  5. Lipton A, Uzzo R, Amato RJ, et al. The science and practice of bone health in oncology: managing bone loss and metastasis in patients with solid tumors. J Natl Compr Canc Netw. 2009;7 Suppl 7:S1–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Henriksen G, Breistol K, Bruland OS, Fodstad O, Larsen RH. Significant antitumor effect from bone-seeking, alpha-particle-emitting (223)Ra demonstrated in an experimental skeletal metastases model. Cancer Res. 2002;62:3120–5.

    CAS  PubMed  Google Scholar 

  7. Roodman GD. Mechanism of bone metastases. N Engl J Med. 2004;350:1655–64.

    Article  CAS  PubMed  Google Scholar 

  8. Ibrahim T, Flamini E, Mercatali L, et al. Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer. 2010;116:1406–18.

    Article  CAS  PubMed  Google Scholar 

  9. Blacksburg SR, Witten MR, Haas JA. Integrating bone targeting radiopharmaceuticals into the management of patients with castrate-resistant prostate cancer with symptomatic bone metastases. Curr Treat Options Oncol. 2015;16:325.

    Article  PubMed  Google Scholar 

  10. Bienz M, Saad F. Management of bone metastases in prostate cancer: a review. Curr Opin Support Palliat Care. 2015;9:261–7.

    Article  PubMed  Google Scholar 

  11. Saad F, Gleason DM, Murray R, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst. 2002;94(19):1458–68.

    Article  CAS  PubMed  Google Scholar 

  12. El-Amm J, Freeman A, Patel N, Aragon-Ching JB. Bone-targeted therapies in metastatic castration-resistant prostate cancer: evolving paradigms. Prostate Cancer. 2013;2013:210686. doi:10.1155/2013/210686.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fizazi K, Lipton A, Mariette X, et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol. 2009;27(10):1564–71.

    Article  CAS  PubMed  Google Scholar 

  14. Smith MR, Egerdie B, Hernandez TN, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009;361(8):745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377(9768):813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith MR, Saad F, Coleman R, et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet. 2012;379(9810):39–46.

    Article  CAS  PubMed  Google Scholar 

  17. Rubini G, Nicoletti A, Rubini D, Asabella AN. Radiometabolic treatment of bone-metastasizing cancer: from 186rhenium to 223radium. Cancer Biother Radiopharm. 2014;29(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  18. Ariel IM, Hassouna H. Carcinoma of the prostate: the treatment of bone metastases by radioactive phosphorus. Int Surg. 1985;70:63–6.

    CAS  PubMed  Google Scholar 

  19. Lewington VJ. Bone-seeking radionuclides for therapy. J Nucl Med. 2005;46:38S–47.

  20. Den RB, Doyle LA, Knudsen E. Practical guide to the use of radium-223 dichloride. Can J Urol. 2014;21 Suppl 1:70–6.

    PubMed  Google Scholar 

  21. Porter AT, McEwan AJ, Powe JE, et al. Results of a randomized phase III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys. 1993;25(5):805–13.

    Article  CAS  PubMed  Google Scholar 

  22. Mertens WC, Stitt L, Porter AT. Strontium-89 therapy and relief of pain in patients with prostatic carcinoma metastatic to bone: a dose response relationship? Am J Clin Oncol. 1993;16(3):238–42.

  23. Finlay IG, Mason MD, Shelley M. Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol. 2005;6(6):392–400.

    Article  CAS  PubMed  Google Scholar 

  24. Tu SM, Millikan RE, Mengistu B, et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomized phase II trial. Lancet. 2001;357(9253):336–41.

    Article  CAS  PubMed  Google Scholar 

  25. Palmedo H, Manka-Waluch A, Albers P, et al. Repeated bone-targeted therapy for hormone-refractory prostate carcinoma: randomized phase II trial with the new, high-energy radiopharmaceutical rhenium-188 hydroxyethylidenediphosphonate. J Clin Oncol. 2003;21(15):2869–75.

    Article  CAS  PubMed  Google Scholar 

  26. Turner JH, Claringbold PG, Hetherington EL, et al. A phase I study of Samarium-153 ethylenediaminetetramethylene phosphonate therapy for disseminated skeletal metastases. J Clin Oncol. 1989;7(12):1926–31.

    CAS  PubMed  Google Scholar 

  27. Serafini AN, Houston SJ, Resche I, et al. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J Clin Oncol. 1998;16(4):1574–81.

    CAS  PubMed  Google Scholar 

  28. Tian JH, Zhang JM, Hou QT, et al. Multicentre trial on the efficacy and toxicity of single-dose samarium-153-ethylene diamine tetramethylene phosphonate as a palliative treatment for painful skeletal metastases in China. Eur J Nucl Med. 1999;26(1):2–7.

    Article  CAS  PubMed  Google Scholar 

  29. Sartor O, Reid RH, Hoskin PJ, et al. Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology. 2004;63(5):940–5.

    Article  PubMed  Google Scholar 

  30. Fizazi K, Beuzeboc P, Lumbroso J, et al. Phase II trial of consolidation docetaxel and samarium-153 in patients with bone metastases from castration-resistant prostate cancer. J Clin Oncol. 2009;27(15):2429–35.

    Article  CAS  PubMed  Google Scholar 

  31. Ando A, Ando I, Tonami N, et al. 177Lu-EDTMP: a potential therapeutic bone agent. Nucl Med Commun. 1998;19(6):587–91.

    Article  CAS  PubMed  Google Scholar 

  32. Chakraborty S, Das T, Banerjee S, et al. 177Lu-EDTMP: a viable bone pain palliative in skeletal metastasis. Cancer Biother Radiopharm. 2008;23(2):202–13.

    Article  CAS  PubMed  Google Scholar 

  33. Agarwal KK, Singla S, Arora G, et al. (177)Lu-EDTMP for palliation of pain from bone metastases in patients with prostate and breast cancer: a phase II study. Eur J Nucl Med Mol Imaging. 2015;42(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  34. Thapa P, Nikam D, Das T, et al. Clinical efficacy and safety comparison of 177Lu-EDTMP with 153Sm-EDTMP on an equidose basis in patients with painful skeletal metastases. J Nucl Med. 2015;56(10):1513–9.

    Article  CAS  PubMed  Google Scholar 

  35. Guerra Liberal FD, Tavares AA, Tavares JM. Comparative analysis of 11 different radioisotopes for palliative treatment of bone metastases by computational methods. Med Phys. 2014;41(11):114101.

    Article  PubMed  Google Scholar 

  36. Hirao M, Hashimoto J, Yamasaki N, et al. Oxygen tension is an important mediator of the transformation of osteoblasts to osteocytes. J Bone Miner Metab. 2007;25:266–76.

    Article  CAS  PubMed  Google Scholar 

  37. Barensden GW. Responses of cultured cells, tumours and normal tissues to radiations of different linear energy transfer. In: Ebert M, Howard A, editors. Current topics in radiation research, vol. IV. Amsterdam, Netherlands: North-Holland; 1968. p. 293–356.

    Google Scholar 

  38. Tinganelli W, Ma NY, Von Neubeck C, et al. Influence of acute hypoxia and radiation quality on cell survival. J Radiat Res. 2013;54 Suppl 1:i23–30.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Seidl C. Radioimmunotherapy with α-particle-emitting radionuclides. Immunotherapy. 2014;6(4):431–58.

    Article  CAS  PubMed  Google Scholar 

  40. Miller BW, Frost SH, Frayo SL, et al. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera. Med Phys. 2015;42(7):4094–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gudkov SV, Shilyagina NYU, Vodeneev V, et al. Targeted radionuclide therapy of human tumors. Int J Mol Sci. 2015;28:17(1). doi:10.3390/ijms17010033

  42. IAEA. Technical meeting on “Alpha emitting radionuclides and radiopharmaceuticals for therapy”. Available at: http://www-naweb.iaea.org/napc/iachem/working_materials/TM-44815-report-Alpha-Therapy.pdf - Accessed 20 April 2016.

  43. Larsen RH, Henriksen G, Øyvind S. Preparation and use of radium-223 to target calcified tissues for pain palliation, bone cancer therapy, and bone surface conditioning. US6635234. Available at: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6635234.PN.&OS=PN/6635234&RS=PN/6635234. Accessed 20 April 2016.

  44. Bruland OS, Nilsson S, Fisher DR, Larsen RH. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin Cancer Res. 2006;12:6250s–57s.

    Article  CAS  PubMed  Google Scholar 

  45. Wieder HA, Lassmann M, Allen-Auerbach MS, et al. Clinical use of bone-targeting radiopharmaceuticals with focus on alpha-emitters. World J Radiol. 2014;6(7):480–5.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gholami Y, Zhu X, Fulton R, et al. Stochastic simulation of radium-223 dichloride therapy at the sub-cellular level. Phys Med Biol. 2015;60:6087–96.

    Article  CAS  PubMed  Google Scholar 

  47. Carrasquillo JA, O'Donoghue JA, Pandit-Taskar N, et al. Phase I pharmacokinetic and biodistribution study with escalating doses of 223Ra-dichloride in men with castration-resistant metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40(9):1384–93.

    Article  CAS  PubMed  Google Scholar 

  48. Lassmann M, Nosske D. Dosimetry of 223Ra-chloride: dose to normal organs and tissues. Eur J Nucl Med Mol Imaging. 2013;40:207–12.

    Article  CAS  PubMed  Google Scholar 

  49. Nilsson S, Larsen RH, Foss SD, et al. First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res. 2005;11(12):4451–9.

    Article  CAS  PubMed  Google Scholar 

  50. Nilsson S, Franzen L, Parker C, et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8:587–94.

    Article  CAS  PubMed  Google Scholar 

  51. Bayer HealthCare. Xofigo (radium Ra 223 dichloride) Injection, for intravenous use: highlights of prescribing information. 2013. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203971lbl.pdf. Accessed 20 April 2016.

  52. Bayer HealthCare. Xofigo: radium Ra 223 dichloride Injection. 2015. Available at: http://www.xofigo-us.com/patient/index.php. Accessed 20 April 2016.

  53. Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    Article  CAS  PubMed  Google Scholar 

  54. Dauer LT, Williamson MJ, Humm J, et al. Radiation safety considerations for the use of 223RaCl2 DE in men with castration-resistant prostate cancer. Health Phys. 2014;106(4):494–504.

    Article  CAS  PubMed  Google Scholar 

  55. Nilsson S, Strang P, Aksnes AK, et al. A randomized, dose-response, multicenter phase II study of radium-223 chloride for the palliation of painful bone metastases in patients with castration-resistant prostate cancer. Eur J Cancer. 2012;48:678–86.

    Article  CAS  PubMed  Google Scholar 

  56. Parker CC, Pascoe S, Chodacki A, et al. A randomized, double-blind, dose-finding, multicenter, phase 2 study of radium chloride (Ra 223) in patients with bone metastases and castration-resistant prostate cancer. Eur Urol. 2013;63:189–97.

    Article  CAS  PubMed  Google Scholar 

  57. Nilsson S, Franzén L, Parker C, et al. Two-year survival follow-up of the randomized, double-blind, placebo-controlled phase II study of radium-223 chloride in patients with castration-resistant prostate cancer and bone metastases. Clin Genitourin Cancer. 2013;11(1):20–6.

    Article  PubMed  Google Scholar 

  58. Sartor O, Coleman R, Nilsson S, et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol. 2014;15:738–46.

    Article  CAS  PubMed  Google Scholar 

  59. Nilsson S, Sartor O, Bruland OS, et al. Pain analysis from the phase III randomized ALSYMPCA study with radium-223 dichloride (Ra-223) in patients with castration-resistant prostate cancer (CRPC) with bone metastases [abstract]. J Clin Oncol. 2013;19 Suppl 6:5038.

    Google Scholar 

  60. Nilsson S, Tomblyn M, Cislo P, et al. Patient-reported quality of life (QOL) analysis of radium-223 dichloride (Ra-223) evaluating pain relief from the phase 3 ALSYMPCA study [abstract]. J Clin Oncol. 2014;32(5s):5069.

    Google Scholar 

  61. Hoskin P, Sartor O, O'Sullivan JM, et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol. 2014;15(12):1397–406.

    Article  CAS  PubMed  Google Scholar 

  62. Shirley M, McCormack PL. Radium-223 dichloride: a review of its use in patients with castration-resistant prostate cancer with symptomatic bone metastases. Drugs. 2014;74:579–86.

    Article  CAS  PubMed  Google Scholar 

  63. Ryan CJ, Saylor PJ, Everly JJ, et al. Bone-targeting radiopharmaceuticals for the treatment of bone-metastatic castration-resistant prostate cancer: exploring the implications of new data. The Oncologist. 2014;19:1012–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Herranz UA, Fernandez Calvo O, Afonso FJ, et al. Radium-223 dichloride: a new paradigm in the treatment of prostate cancer. Expert Rev Anticancer Ther. 2015;15(3):339–48.

    Article  Google Scholar 

  65. McGann S, Horton ER. Radium-223 dichloride: a novel treatment option for castration-resistant prostate cancer patients with symptomatic bone metastases. Ann Pharmacother. 2015;49(4):469–76.

    Article  CAS  PubMed  Google Scholar 

  66. Turner PG, O’Sullivan JM. 223Ra and other bone-targeting radiopharmaceuticals—the translation of radiation biology into clinical practice. Br J Radiol. 2015;88:20140752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chalhoub E, Chalouhy C, Sartor O. Treatment of skeletal metastases with 223Ra-chloride. Clin Transl Imaging. 2015;3:159–65.

    Article  Google Scholar 

  68. Pandit-Taskar N, Larson SM, Carrasquillo JA. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, part 1: a therapy with 223Ra-dichloride. J Nucl Med. 2014;55:268–74.

    Article  CAS  PubMed  Google Scholar 

  69. Gartrell BA, Saad F. Pathologic fractures in patients with metastatic prostate cancer. Curr Opin Urol. 2014;24:595–600.

    Article  PubMed  Google Scholar 

  70. Graff JN, Beer TM. Pharmacotherapeutic management of metastatic, castration-resistant prostate cancer in the elderly: focus on non-chemotherapy agents. Drugs Aging. 2014;31:873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. George D, Moul JW. Emerging treatment options for patients with castration-resistant prostate cancer. Prostate. 2012;72:338–49.

    Article  CAS  PubMed  Google Scholar 

  72. Parker C, Gillessen S, Heidenreich A, et al. Cancer of the prostate: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26 Suppl 5:v69–77.

  73. NCCN. NCCN Guidelines for Patients: Prostate Cancer. 2015. Available at: http://www.nccn.org/patients/guidelines/prostate/. Accessed 20 April 2016.

  74. Vuong W, Sartor O, Pal SK. Radium-223 in metastatic castration resistant prostate cancer. Asian J Androl. 2014;16:348–53.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mukherji D, El Dika I, Temraz S, et al. Evolving treatment approaches for the management of metastatic castration-resistant prostate cancer: role of radium-223. Ther Clin Risk Manag. 2014;10:373–80.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gernone A, Bordonaro S, Tralongo P. Optimal sequence of bone target drugs in metastatic prostatic cancer. Expert Rev Anticancer Ther. 2015;15(8):923–9.

    Article  CAS  PubMed  Google Scholar 

  77. Borsò E, Boni G, Galli L, et al. Radium-223 dichloride: a multidisciplinary approach to metastatic castration-resistant prostate cancer. Future Oncol. 2015;11(2):323–31.

    Article  PubMed  Google Scholar 

  78. Todenhöfer T, Stenzl A, Hofbauer LC, et al. Targeting bone metabolism in patients with advanced prostate cancer: current options and controversies. Int J Endocrinol. 2015;2015:838202

    Article  PubMed  PubMed Central  Google Scholar 

  79. Body JJ, Casimiro S, Costa L. Targeting bone metastases in prostate cancer: improving clinical outcome. Nat Rev Urol. 2015;12(6):340–56. doi:10.1038/nrurol.2015.90.

    Article  PubMed  Google Scholar 

  80. Dreicer R. How to approach sequencing therapy in patients with metastatic castration resistant prostate cancer. Can J Urol. 2014;21 Suppl 1:93–7.

    PubMed  Google Scholar 

  81. Sciuto R, Maini CL, Tofani A, et al. Radiosensitization with low dose carboplatin enhances pain palliation in radioisotope therapy with strontium-89. Nucl Med Commun. 1996;17(9):799–804.

    Article  CAS  PubMed  Google Scholar 

  82. Sciuto R, Festa A, Rea S, et al. Effects of low-dose cisplatin on 89Sr therapy for painful bone metastases from prostate cancer: a randomized clinical trial. J Nucl Med. 2002;43(1):79–86.

    CAS  PubMed  Google Scholar 

  83. Ricci S, Boni G, Pastina I, et al. Clinical benefit of bone-targeted radiometabolic therapy with 153Sm-EDTMP combined with chemotherapy in patients with metastatic hormone-refractory prostate cancer. Eur J Nucl Med Mol Imaging. 2007;34(7):1023–30.

    Article  CAS  PubMed  Google Scholar 

  84. Borsò E, Boni G, Pastina I, et al. Safety and antitumor efficacy of 153Sm-EDTMP and docetaxel administered sequentially to patients with metastatic castration-resistant prostate cancer. Nucl Med Commun. 2014;35(1):88–94.

    Article  PubMed  Google Scholar 

  85. Rose JN, Crook JM. The role of radiation therapy in the treatment of metastatic castrate-resistant prostate cancer. Ther Adv Urol. 2015;7(3):135–45.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Basch E, Loblaw EA, Oliver TK, et al. Systemic therapy in men with metastatic castration-resistant prostate cancer: American Society of Clinical Oncology and Cancer Care Ontario clinical practice guideline. J Clin Oncol. 2014;32:3436–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/results?term=radium&show_down=Y. Accessed 20 April 2016.

  88. European Union Clinical Trials Register. Available at: https://www.clinicaltrialsregister.eu. Accessed 20 April 2016.

  89. Morris MJ, Higano C, Scher HI, et al. Safety of radium-223 dichloride with docetaxel in patients with bone metastases from castration-resistant prostate cancer: a phase 1/2a clinical trial. Ann Oncol. 2014;25 Suppl 4:iv255–79.

    Google Scholar 

  90. Finkelstein SE, Michalski JM, O’Sullivan JM, et al. EBRT use and safety with radium-223 dichloride in patients with CRPC and symptomatic bone metastases from the ALSYMPCA trial [abstract]. J Clin Oncol. 2015;33(7):182.

    Google Scholar 

  91. Roach 3rd M. Radium-223 vs. EBRT for multiple painful bone metastases: is less more? Oncology (Williston Park). 2014;28(4):297–8.

    Google Scholar 

  92. Jayasekera J, Onukwugha E, Bikov K, et al. The economic burden of skeletal-related events among elderly men with metastatic prostate cancer. Pharmacoeconomics. 2014;32:173–91.

    Article  CAS  PubMed  Google Scholar 

  93. Yong C, Onukwugha E, Mullins CD. Clinical and economic burden of bone metastasis and skeletal-related events in prostate cancer. Curr Opin Oncol. 2014;26:274–83.

    Article  PubMed  Google Scholar 

  94. Pani L. Riclassificazione del medicinale per uso umano «Xofigo», ai sensi dell’articolo 8, comma 10, della legge 24 dicembre 1993, n. 537. (Determina n. 576/2015). Gazzetta Ufficiale della Repubblica Italiana. General Series 2015, no. 121.

  95. Readler LA. Xofigo (radium Ra 223 dichloride):. the first alpha particle-emitting radioactive agent for the treatment of castration-resistant prostate cancer with symptomatic bone metastases. American Health and Drugs Benefits. Available at: http://www.ahdbonline.com/issues/2014/march-2014-volume-7-special-feature-fifth-annual-payers-guide-to-new-fda-approvals/1733-xofigo-radium-ra-223-dichloride-the-first-alpha-particle-emitting-radioactive-agent-for-the-treatment-of-castration-resistant-prostate-cancer-with-symptomatic-bone-metastases - Last accessed: October 19, 2015.

  96. Guirgis HM. Novel methodology for cost evaluation of anticancer drugs in castrate-resistant prostate cancer [abstract]. J Clin Oncol. 2013;31 Suppl 6:200.

    Google Scholar 

  97. Renzulli JF 2nd, Collins J, Mega A. Radium-223 dichloride: illustrating the benefits of a multidisciplinary approach for patients with metastatic castration-resistant prostate cancer. J Multidiscip Healthc. 2015;8:279–86.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shore ND. Radium-223 dichloride for metastatic castration-resistant prostate cancer: the urologist’s perspective. Urology. 2015;85(4):717–24.

    Article  PubMed  Google Scholar 

  99. Takalkar A, Adams S, Subbiah V. Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone. Exp Hematol Oncol. 2014;3:23.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Coleman R, Ak A, Naume B, et al. A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease. Breast Cancer Res Treat. 2014;145:411–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Silva SC, Wilson C, Woll PJ. Bone-targeted agents in the treatment of lung cancer. Ther Adv Med Oncol. 2015;7(4):219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chittenden SJ, Hindorf C, Parker CC, et al. A phase 1, open-label study of the biodistribution, pharmacokinetics and dosimetry of radium-223 dichloride (223Ra dichloride) in patients with hormone refractory prostate cancer and skeletal metastases. J Nucl Med. 2015;56(9):1304–9.

    Article  CAS  PubMed  Google Scholar 

  103. Jadvar H, Challa S, Quinn D, et al. One-year postapproval clinical experience with radium-223 dichloride in patients with metastatic castrate-resistant prostate cancer. Cancer Biother Radiopharm. 2015;30(5):195–9.

  104. Hindorf C, Chittenden S, Aksnes AK, et al. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases. Nucl Med Commun. 2012;33(7):726–32.

    Article  CAS  PubMed  Google Scholar 

  105. Pacilio M, Ventroni G, De Vincentis G, et al. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting 223Ra-dichloride. Eur J Nucl Med Mol Imaging. 2016;43:21–33.

    Article  CAS  PubMed  Google Scholar 

  106. Follacchio GA, Frantellizzi V, Pellegrini R, et al. Feasibility of 223Ra quantitative imaging for lesion dosimetry [abstract]. Eur J Nucl Med Mol Imaging. 2015;42(1 Suppl):OP236.

    Google Scholar 

  107. Murray I, Chittenden SJ, Parker CC, et al. The potential of F-18 fluoride PET as a surrogate for radium-223 chloride lesion dosimetry in hormone refractory prostate cancer patients [abstract]. Eur J Nucl Med Mol Imaging. 2015;42(1 Suppl):OP235.

    Google Scholar 

  108. Etchebehere EC, Araujo JC, Fox PS, et al. Prognostic factors in patients treated with 223Ra: the role of skeletal tumor burden on baseline 18F-fluoride PET/CT in predicting overall survival. J Nucl Med. 2015;56(8):1177–84.

    Article  CAS  PubMed  Google Scholar 

  109. Cook Jr G, Parker C, Chua S, et al. 18F-fluoride PET: changes in uptake as a method to assess response in bone metastases from castrate-resistant prostate cancer patients treated with 223Ra-chloride (Alpharadin). EJNMMI Res. 2011;1(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Miyazaki KS, Kuang Y, Kwee SA. Changes in skeletal tumor activity on (18)F-choline PET/CT in patients receiving (223)radium radionuclide therapy for metastatic prostate cancer. Nucl Med Mol Imaging. 2015;49(2):160–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sakretz M, Kurth J, Schwarzenböck SM, et al. Automatic bone scan index for therapy response assessment of radium-223-dichloride (Ra-223) therapy in advanced prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42(1 Suppl):P748.

  112. Yu EY, Duan F, Muzi M, et al. Castration-resistant prostate cancer bone metastasis response measured by 18F-fluoride PET after treatment with dasatinib and correlation with progression-free survival: results from American College of Radiology Imaging Network 6687. J Nucl Med. 2015;56(3):354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of Mrs. Sara Vaghi in editing the manuscript and for secretarial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Stefano Maffioli.

Ethics declarations

Funding

None.

Conflicts of interest

L.M. has received financial support to attend EANM symposia from Bayer. The other authors declare no conflicts of interest.

Ethical approval

This article does not describe any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Florimonte, L., Dellavedova, L. & Maffioli, L.S. Radium-223 dichloride in clinical practice: a review. Eur J Nucl Med Mol Imaging 43, 1896–1909 (2016). https://doi.org/10.1007/s00259-016-3386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-016-3386-5

Keywords

Navigation