Skip to main content
Log in

Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Enzyme cost is a major impediment to second-generation (2G) cellulosic ethanol production. One strategy to reduce enzyme cost is to engineer enzyme production capacity in a fermentative microorganism to enable consolidated bio-processing (CBP). Ideally, a strain with a high secretory phenotype, high fermentative capacity as well as an innate robustness to bioethanol-specific stressors, including tolerance to products formed during pre-treatment and fermentation of lignocellulosic substrates should be used. Saccharomyces cerevisiae is a robust fermentative yeast but has limitations as a potential CBP host, such as low heterologous protein secretion titers. In this study, we evaluated natural S. cerevisiae isolate strains for superior secretion activity and other industrially relevant characteristics needed during the process of lignocellulosic ethanol production. Individual cellulases namely Saccharomycopsis fibuligera Cel3A (β-glucosidase), Talaromyces emersonii Cel7A (cellobiohydrolase), and Trichoderma reesei Cel5A (endoglucanase) were utilized as reporter proteins. Natural strain YI13 was identified to have a high secretory phenotype, demonstrating a 3.7- and 3.5-fold higher Cel7A and Cel5A activity, respectively, compared to the reference strain S288c. YI13 also demonstrated other industrially relevant characteristics such as growth vigor, high ethanol titer, multi-tolerance to high temperatures (37 and 40 °C), ethanol (10 % w/v), and towards various concentrations of a cocktail of inhibitory compounds commonly found in lignocellulose hydrolysates. This study accentuates the value of natural S. cerevisiae isolate strains to serve as potential robust and highly productive chassis organisms for CBP strain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali N, Athar MA, Khan YH, Idrees M, Ahmad D (2014) Regulation and improvement of cellulase production: recent advances. Nat Resour 5:857–863

    Google Scholar 

  • Basso LC, De Amorim HV, De Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Blaauw D (2015) Crossbreeding of natural Saccharomyces cerevisiae strains for enhanced bio-ethanol production. Master dissertation. Stellenbosch University, South Africa

  • Bull VH, Thiede B (2012) Proteome analysis of tunicamycin-induced ER stress. Electrophoresis 33:1814–1123

    Article  CAS  PubMed  Google Scholar 

  • Carreto L, Eiriz MF, Gomes AC, Pereira PM, Schuller D, Santos MA (2008) Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics 9:17

  • Cavalieri D, Townsend JP, Hartl DL (2000) Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proc Natl Acad Sci U S A 97:12369–12374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho KM, Yoo YJ, Kang HS (1999) δ-integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzym Microb Technol 25:23–30

    Article  CAS  Google Scholar 

  • Da Silva-Filho EA, Brito dos Santos SK, Resende ADM, De Morais JOF, De Morais MA, Ardaillon Simões D (2005) Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting. Antonie Van Leeuwenhoek 88:13–23

    Article  PubMed  Google Scholar 

  • De Baetselier A, Vasavada A, Dohet P, Ha-Thi V, De Beukelaer M, Erpicum T, De Clerck L, Hanotier J, Rosenberg S (1991) Fermentation of a yeast producing Aspergillus niger glucose oxidase: scale-up, purification and characterization of the recombinant enzyme. Nat Biotechnol 9:559–561

    Article  CAS  Google Scholar 

  • Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquié-Moreno MR, Thevelein JM (2013) Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol Biofuels 6:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Den Haan R, Rose SH, Lynd LR, Van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94

    Article  CAS  PubMed  Google Scholar 

  • Den Haan R, Kroukamp H, Van Zyl J-HD, Van Zyl WH (2013) Cellobiohydrolase secretion by yeast: current state and prospects for improvement. Process Biochem 48:1–12

    Article  CAS  Google Scholar 

  • Den Haan R, Van Rensburg E, Rose SH, Görgens JF, Van Zyl WH (2015) Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol 33:32–38

    Article  CAS  PubMed  Google Scholar 

  • Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand J-P, Prato M, Muller S, Bianco A (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522–1528

    Article  CAS  PubMed  Google Scholar 

  • Favaro L, Basaglia M, Trento A, Van Rensburg E, García-Aparicio M, Van Zyl WH, Casella S (2013) Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production. Biotechnol Biofuels 6:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Favaro L, Viktor MJ, Rose SH, Viljoen-Bloom M, Van Zyl WH, Basaglia M, Cagnin L, Casella S (2015) Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases. Biotechnol Bioeng 112:1751–1760

    Article  CAS  PubMed  Google Scholar 

  • Fay JC, McCullough HL, Sniegowski PD, Eisen MB (2004) Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol 5:26

    Article  Google Scholar 

  • Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodríguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C, Porro D, Ferrer P, Tutino ML, Mattanovich D, Villaverde A (2008) Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Factories 7:11

    Article  Google Scholar 

  • Gurgu L, Lafraya Á, Polaina J, Marín-Navarro J (2011) Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL1) from Saccharomycopsis fibuligera. Bioresource Technol 102:5229–5236

    Article  CAS  Google Scholar 

  • Harkness TAA, Arnason TG (2014) A simplified method for measuring secreted invertase activity in Saccharomyces cerevisiae. Biochem Pharmacol (Los Angel) 3:151

    Google Scholar 

  • Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  CAS  PubMed  Google Scholar 

  • Hubmann G, Foulquié-moreno MR, Nevoigt E, Duitama J, Meurens N, Pais TM, Mathé L, Thi H, Nguyen T, Swinnen S (2013) Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering. Metab Eng 17:68–81

    Article  CAS  PubMed  Google Scholar 

  • Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86:403–417

    Article  CAS  PubMed  Google Scholar 

  • Ilmén M, Den Haan R, Brevnova E, McBride J, Wiswall E, Froehlich A, Koivula A, Voutilainen SP, Siika-Aho M, La Grange DC, Thorngren N, Ahlgren S, Mellon M, Deleault K, Rajgarhia V, Van Zyl WH, Penttilä M (2011) High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels 4:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin M, Sarks C, Gunawan C, Bice BD, Simonett SP, Avanasi Narasimhan R, Willis LB, Dale BE, Balan V, Sato TK (2013) Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX™ pretreated corn Stover. Biotechnol Biofuels 6:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanik-Ennulat C, Montalvo E, Neff N (1995) Sodium orthovanadate-resistant mutants of Saccharomyces cerevisiae show defects in golgi-mediated protein glycosylation, sporulation and detergent resistance. Genetics 140:933–943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koppram R, Albers E, Olsson L (2012) Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 5:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kricka W, Fitzpatrick J, Bond U (2015) Challenges for the production of bioethanol from biomass using recombinant yeasts. Adv Appl Microbiol 92:89–125

    Article  PubMed  Google Scholar 

  • Kroukamp H (2015) Improving the protein secretion capacity of Saccharomyces cerevisiae with strain engineering. Doctoral Dissertation. Stellenbosch University, South Africa

  • Kroukamp H, Den Haan R, Van Wyk N, Van Zyl WH (2013) Overexpression of native PSE1 and SOD1 in Saccharomyces cerevisiae improved heterologous cellulase secretion. Appl Energy 102:150–156

    Article  CAS  Google Scholar 

  • Kvitek DJ, Will JL, Gasch AP (2008) Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4:e1000223

    Article  PubMed  PubMed Central  Google Scholar 

  • La Grange DC, Den Haan R, Van Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87:1195–1208

    Article  PubMed  Google Scholar 

  • Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z (2012) Doctoral Dissertation. In: Metabolic engineering of recombinant protein productions by Saccharomyces cerevisiae. Chalmers University, Sweden

    Google Scholar 

  • Liu Z, Österlund T, Hou J, Petranovic D, Nielsen J (2013) Anaerobic α-amylase production and secretion with fumarate as the final electron acceptor in Saccharomyces cerevisiae. Appl Environ Microbiol 79:2962–2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin C, Jönsson LJ (2003) Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzym Microb Technol 32:386–395

    Article  CAS  Google Scholar 

  • Mattanovich D, Gasser B, Hohenblum H, Sauer M (2004) Stress in recombinant protein producing yeasts. J Biotechnol 113:121–135

    Article  CAS  PubMed  Google Scholar 

  • McBride JEE, Deleault KM, Lynd LR, Pronk JT (2007) Recombinant yeast strains expressing tethered cellulase enzymes. Patent PCT/US2007/085390

  • Meinander N, Zacchi G, Hahn-Hägerdal B (1996) A heterologous reductase affects the redox balance of recombinant Saccharomyces cerevisiae. Microbiology 142:165–172

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee V, Steensels J, Lievens B, Van de Voorde I, Verplaetse A, Aerts G, Willems KA, Thevelein JM, Verstrepen KJ, Ruyters S (2014) Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Appl Microbiol Biotechnol 98:9483–9498

    Article  CAS  PubMed  Google Scholar 

  • Njokweni AP, Rose SH, Van Zyl WH (2012) Fungal β-glucosidase expression in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 39:1445–1452

    Article  CAS  PubMed  Google Scholar 

  • Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405

    Article  CAS  PubMed  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  CAS  PubMed  Google Scholar 

  • Ruyters S, Mukherjee V, Verstrepen KJ, Thevelein JM, Willems KA, Lievens B (2014) Assessing the potential of wild yeasts for bioethanol production. J Ind Microbiol Biotechnol 42:39–48

    Article  PubMed  Google Scholar 

  • Sambrook J, Russel DB (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schuller D, Casal M (2007) The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis. Antonie Van Leeuwenhoek 91:137–150

    Article  CAS  PubMed  Google Scholar 

  • Skelly DA, Merrihew GE, Riffle M, Connelly CF, Kerr EO, Johansson M, Jaschob D, Graczyk B, Shulman NJ, Wakefield J, Cooper SJ, Fields S, Noble WS, Muller EGD, Davis TN, Dunham MJ, Maccoss MJ, Akey JM (2013) Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Res 23:1496–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38:947–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swinnen S, Thevelein JM, Nevoigt E (2012) Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Res 12:215–227

    Article  CAS  PubMed  Google Scholar 

  • Teste MA, Duquenne M, François JM, Parrou J-L (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Zyl JHD, Den Haan R, Van Zyl WH (2014) Over-expression of native Saccharomyces cerevisiae exocytic SNARE genes increased heterologous cellulase secretion. Appl Microbiol Biotechnol 98:5567–5578

    Article  CAS  PubMed  Google Scholar 

  • Warringer J, Zörgö E, Cubillos FA, Zia A, Gjuvsland A, Simpson JT, Forsmark A, Durbin R, Omholt SW, Louis EJ, Liti G, Moses A, Blomberg A (2011) Trait variation in yeast is defined by population history. PLoS Genet 7:e1002111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Westhuizen TJ, Augustyn OPH, Pretorius IS (2000) Geographical distribution of indigenous Saccharomyces cerevisiae strains isolated from vineyards in the coastal regions of the western cape in South Africa. S Afr J Enol Vitic 21:3–9

    Google Scholar 

  • Van Rooyen R, Hahn-Hägerdal B, La Grange DC, Van Zyl WH (2005) Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120:284–295

  • Yamada R, Tanaka T, Ogino C, Kondo A (2010) Gene copy number and polyploidy on products formation in yeast. Appl Microbiol Biotechnol 88:849–857

    Article  CAS  Google Scholar 

  • Zakrzewska A, van Eikenhorst G, Burggraaff JE, Vis DJ, Hoefsloot H, Delneri D, Oliver SG, Brul S, Smits GJ (2011) Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness. Mol Biol Cell 22:4435–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Research Foundation (NRF) for financial support to the Chair of Energy Research: Biofuels and other clean alternative fuels (grant number UID 86423 awarded to WHvZ). The authors would like to thank Dr. Neil Jolly from ARC Infruitec-Nietvoorbij, Stellenbosch South Africa for making the natural S. cerevisiae strains available for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem Heber van Zyl.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davison, S.A., den Haan, R. & van Zyl, W.H. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 100, 8241–8254 (2016). https://doi.org/10.1007/s00253-016-7735-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7735-x

Keywords

Navigation