Skip to main content
Log in

Gene copy number and polyploidy on products formation in yeast

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yeast, such as Saccharomyces cerevisiae or Kluyveromyces lactis is appropriate strain for ethanol production or some useful compounds production. Cellulases expressing yeast can ferment ethanol from cellulosic materials; however, the productivity should be increase more and more. To improve and engineer the productivity, the target gene(s) were introduced into yeast genome. Generally, using genetic engineering, increasing integrated gene numbers are increased, the expressed protein ability such as enzymatic activities are also increased. In this mini-review, we focused on the effect of integrated gene copy number and the polyploidy on the productivity such as enzymatic activity and/or product yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akada R (2002) Genetically modified industrial yeast ready for application. J Biosci Bioeng 94:536–544

    CAS  Google Scholar 

  • Akada R, Matsuo K, Aritomi K, Nishizawa Y (1999) Construction of recombinant sake yeast containing a dominant FAS2 mutation without extraneous sequences by a two-step replacement protocol. J Biosci Bioeng 87:43–48

    Article  CAS  Google Scholar 

  • Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545

    CAS  Google Scholar 

  • Aritomi K, Hirosawa I, Hoshida H, Shiigi M, Nishizawa Y, Kashiwagi S, Akada R (2004) Self-cloning yeast strains containing novel FAS2 mutations produce a higher amount of ethyl caproate in Japanese sake. Biosci Biotechnol Biochem 68:206–214

    Article  CAS  Google Scholar 

  • Benitez T, Gasent-Ramirez JM, Castrejon F, Codon AC (1996) Development of new strains for the food industry. Biotechnol Prog 12:149–163

    Article  CAS  Google Scholar 

  • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    Article  CAS  Google Scholar 

  • Bolotin-Fukuhara M, Toffano-Nioche C, Artiguenave F, Duchateau-Nguyen G, Lemaire M, Marmeisse R, Montrocher R, Robert C, Termier M, Wincker P, Wésolowski-Louvel M (2000) Genomic exploration of the hemiascomycetous yeasts: 11. Kluyveromyces lactis. FEBS Lett 487:66–70

    Article  CAS  Google Scholar 

  • Bonekamp FJ, Oosterom J (1994) On the safety of Kluyveromyces lactis—a review. Appl Microbiol Biotechnol 41:1–3

    Google Scholar 

  • Cho KM, Yoo YJ, Kang HS (1999) Delta-Integration of endo/exo-glucanase and beta-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enz Microbiol Technol 25:23–30

    Article  CAS  Google Scholar 

  • Choi EY, Park JN, Kim HO, Shin DJ, Chun YH, Im SY, Chun SB, Bai S (2002) Construction of an industrial polyploid strain of Saccharomyces cerevisiae containing Saprolegnia ferax beta-amylase gene and secreting beta-amylase. Biotechnol Lett 24:1785–1790

    Article  CAS  Google Scholar 

  • Daigaku Y, Endo K, Watanabe E, Ono T, Yamamoto K (2004) Loss of heterozygosity and DNA damage repair in Saccharomyces cerevisiae. Mutat Res 556:183–191

    CAS  Google Scholar 

  • Dequin S (2001) The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl Microbiol Biotechnol 56:577–588

    Article  CAS  Google Scholar 

  • Dujon B (1996) The yeast genome project: what did we learn? Trends Genet 12:263–270

    Article  CAS  Google Scholar 

  • Erhart E, Hollenberg CP (1983) The presence of a defective LEU2 gene in 2 μm DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol 156:625–635

    CAS  Google Scholar 

  • Fleer R, Chen X, Amellal N, Yeh P, Fournier A, Guinet F, Gault N, Faucher D, Folliard F, Fukuhara H, Mayaux J (1991a) High-level secretion of correctly processed recombinant human interleukin-1beta in Kluyveromyces lactis. Gene 107:285–295

    Article  CAS  Google Scholar 

  • Fleer R, Yeh P, Amellal N, Maury I, Fournier A, Bacchetta F, Baduel P, Jung G, L’Hote H, Becquart J, Fukuhara H, Mayayaux J-F (1991b) Stable multicopy vectors for high-level secretion of recombinant human serum albumin by Kluyveromyces lactis yeasts. Bio/Technol 9:968–975

    Article  CAS  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354

    Article  CAS  Google Scholar 

  • Fujii T, Kondo K, Shimizu F, Sone H, Tanaka J, Inoue T (1990) Application of a ribosomal DNA integration vector in the construction of a Brewer’s yeast having R-acetolactate decarboxylase activity. Appl Environ Microbiol 56:997–1003

    CAS  Google Scholar 

  • Garay-Arroyo A, Covarrubias AA, Clark I, Niño I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63:734–741

    Article  CAS  Google Scholar 

  • Guijo S, Mauricio JC, Salmon JM, Ortega JM (1997) Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and ‘flor’ film ageing of dry sherry-type wines. Yeast 13:101–117

    Article  CAS  Google Scholar 

  • Gunge N (1966) Breeding of bakers’ yeast-determination of the ploidy and an attempt to improve practical properties. Japan J Genet 41:203–214

    Article  Google Scholar 

  • Hammond JRM (1995) Genetically-modified brewing yeasts for the 21st century. Progress to date. Yeast 11:1613–1627

    Article  CAS  Google Scholar 

  • Hashimoto S, Ogura M, Aritomi K, Hoshida H, Nishizawa Y, Akada R (2005) Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis. Appl Environ Microbiol 71:312–319

    Article  CAS  Google Scholar 

  • Hashimoto S, Aritomi K, Minohara T, Nishizawa Y, Hoshida H, Kashiwagi S, Akada R (2006) Direct mating between diploid sake strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 69:689–96

    Article  CAS  Google Scholar 

  • Higgins VJ, Bell PJL, Dawes IW, Attfield PV (2001) Generation of a novel Saccharomyces cerevisiae strain that exhibits strong maltose utilization and hyperosmotic resistance using nonrecombinant techniques. Appl Environ Microbiol 67:4346–4348

    Article  CAS  Google Scholar 

  • Hiraoka M, Watanabe K, Umezu K, Maki H (2000) Spontaneous loss of heterozygosity in diploid Saccharomyces cerevisiae cells. Genetics 156:1531–1548

    CAS  Google Scholar 

  • Hirosawa I, Aritomi K, Hoshida H, Kashiwagi S, Nishizawa Y, Akada R (2004) Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol. Appl Microbiol Biotechnol 65:68–73

    Article  CAS  Google Scholar 

  • Javadekar VS, SivaRaman H, Gokhale DV (1995) Industrial yeast strain improvement: construction of a highly flocculent yeast with a killer character by protoplast fusion. J Ind Microbiol 15:94–102

    Article  CAS  Google Scholar 

  • Kishimoto M (1994) Fermentation characteristics of hybrids between the cryophilic wine yeast Saccharomyces bayanus and the mesophilic wine yeast Saccharomyces cerevisiae. J Ferment Bioeng 77:432–435

    Article  CAS  Google Scholar 

  • Kotaka A, Sahara H, Kondo A, Ueda M, Hata Y (2009) Efficient generation of recessive traits in diploid sake yeast by targeted gene disruption and loss of heterozygosity. Appl Microbiol Biotechnol 82:387–395

    Article  CAS  Google Scholar 

  • Lee FW, Da Silva NA (1997) Sequential delta-integration for the regulated insertion of cloned genes in Saccharomyces cerevisiae. Biotechnol Prog 13:368–373

    Article  CAS  Google Scholar 

  • Lee W, Da Silva NA (2006) Application of sequential integration for metabolic engineering of 1, 2-propanediol production in yeast. Metabolic Eng 8:58–65

    Article  CAS  Google Scholar 

  • Lima N, Moreira C, Teixeira JA, Mota M (1995) Introduction of flocculation into industrial yeast, Saccharomyces cerevisiae saké, by protoplast fusion. Microbios 81:187–197

    CAS  Google Scholar 

  • Lindegren CC, Lindegren G (1943) Selecting, inbreeding, recombining, and hybridizing commercial yeasts. J Bacteriol 46:405–419

    CAS  Google Scholar 

  • Lopes TS, Klootwijk J, Veenstra AE, van der Aar PC, van Heerikhuizen H, Raue HA, Planta RJ (1989) High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression. Gene 79:199–206

    Article  CAS  Google Scholar 

  • Loray MA, Spencer JFT, Spencer DM, de Figueroa LIC (1995) Hybrids obtained by protoplast fusion with a salt-tolerant yeast. J Ind Microbiol 14:508–513

    Article  CAS  Google Scholar 

  • Maráz A (2002) From yeast genetics to biotechnology. Acta Microbiol Immunol Hung 49:483–491

    Article  Google Scholar 

  • Martin C, Jönsson LJ (2003) Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb Technol 32:386–395

    Article  CAS  Google Scholar 

  • Mochizuki D, Miyahara K, Hirata D, Matsuzaki H, Hatano T, Fukui S, Miyakawa T (1994) Overexpression and secretion of cellulolytic enzymes by δ-sequence-mediated multicopy integration of heterologous DNA sequences into the chromosomes of Saccharomyces cerevisiae. J Ferment Bioeng 77:468–473

    Article  CAS  Google Scholar 

  • Mulder W, Scholten IHJM, Grivell LA (1995) Carbon catabolite regulation of transcription of nuclear genes coding for mitochondrial proteins in the yeast Kluyveromyces lactis. Curr Genet 28:267–273

    Article  CAS  Google Scholar 

  • Nakazawa N, Ashikari T, Goto N, Amachi T, Nakajima R, Harashima S, Oshima Y (1992) Partial restoration of sporulation defect in sake yeasts, Kyokai no. 7 and no. 9, by increased dosage of the IME1 gene. J Ferment Bioeng 73:265–270

    Article  CAS  Google Scholar 

  • Oliveira C, Teixeira JA, Lima N, Da Silva NA, Domingues L (2007) Development of stable flocculent Saccharomyces cerevisiae strain for continuous Aspergillus niger beta-galactosidase production. J Biosci Bioeng 103:318–324

    Article  CAS  Google Scholar 

  • Parekh RN, Shaw MR, Wittrup KD (1996) An integration vector for tunable high copy stable integration into the dispersed Ty δ sites of Saccharomyces cerevisiae. Biotechnol Prog 12:16–21

    Article  CAS  Google Scholar 

  • Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V, Lievense J, Liu C-L, Ranzo BM, Frontali L, Alberghina L (1999) Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl Env Microbiol 65:4211–4215

    CAS  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  CAS  Google Scholar 

  • Pretorius IS, Bauer FF (2002) Meeting the consumer challenge through genetically customized wine–yeast strains. Trends Biotech 20:426–432

    Article  CAS  Google Scholar 

  • Ramírez M, Peréz F, Regodón JA (1998) A simple and reliable method for hybridization of homothallic wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 64:5039–5041

    Google Scholar 

  • Randolph W (1984) Direct food substance affirmed as generally recognized as safe: lactase enzyme preparation from Kluyveromyces lactis. Fed Reg 49:47384–47387

    Google Scholar 

  • Romano P, Soli MG, Suzzi G, Grazia L, Zambonelli C (1985) Improvement of a wine Saccharomyces cerevisiae strain by a breeding program. Appl Environ Microbiol 50:1064–1067

    CAS  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488

    Article  CAS  Google Scholar 

  • Saitoh S, Mieno Y, Nagashima T, Kumagai C, Kitamoto K (1996) Breeding of a new type of baker’s yeast by delta-integration for overproduction of glucoamylase using a homothallic yeast. J Ferment Bioeng 81:98–103

    Article  Google Scholar 

  • Saitoh S, Tanaka T, Kondo A (2008) Breeding of industrial diploid yeast strain with chromosomal integration of multiple beta-glucosidase genes. J Biosci Bioeng 106:594–597

    Article  CAS  Google Scholar 

  • Sakai A, Shimizu Y, Hishinuma F (1990) Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a delta sequence of yeast retrotransposon Ty. Appl Microbiol Biotechnol 33:302–306

    Article  CAS  Google Scholar 

  • Sakai A, Ozawa F, Higashizaki T, Shimizu Y, Hishinuma F (1991) Enhanced secretion of human nerve growth factor from Saccharomyces cerevisiae using an advanced delta-integration system. Bio/Technology 9:1382–1385

    Article  CAS  Google Scholar 

  • Scheinbach S (1983) Protoplast fusion as a means of producing new industrial yeast strains. Biotechnol Adv 1:289–300

    Article  CAS  Google Scholar 

  • Shinohara T, Saito K, Yanagida F, Goto S (1994) Selection and hybridization of wine yeasts for improved winemaking properties: fermentation rate and aroma productivity. J Ferment Bioeng 77:428–431

    Article  CAS  Google Scholar 

  • Shinohara T, Mamiya S, Yanagida F (1997) Introduction of flocculation property into wine yeasts (Saccharomyces cerevisiae) by hybridization. J Ferment Bioeng 83:96–101

    Article  CAS  Google Scholar 

  • Shiomi N, Fukuda H, Murata K, Kimura A (1995) Improvement of S-adenosylmethionine production by integration of the ethionine-resistance gene into chromosomes of the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:730–733

    Article  CAS  Google Scholar 

  • Suizu T, Tsutsumi H, Kawado A, Imayasu S, Inose T, Kimura A, Murata K (1994) Induction of yeast sporulation by lysine-related compounds and glutathione in nutrition-rich conditions. J Ferment Bioeng 77:568–571

    Article  CAS  Google Scholar 

  • Suizu T, Tsutsumi H, Kawado A, Murata K, Suginami K, Imayasu S (1996) Methods for sporulation of industrially used sake yeasts. J Ferment Bioeng 81:93–97

    Article  CAS  Google Scholar 

  • Swinkels BW, van Ooyen AJJ, Bonekamp FJ (1993) The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie van Leeuwenhoek 64:187–201

    Article  Google Scholar 

  • Takagi Y, Akada R, Kumagai H, Yamamoto K, Tamaki H (2008) Loss of heterozygosity is induced in Candida albicans by ultraviolet irradiation. Appl Microbiol Biotechnol 77:1073–1082

    Article  CAS  Google Scholar 

  • Tanino T, Aoki T, Chung WY, Watanabe Y, Ogino C, Fukuda H, Kondo A (2009) Improvement of a Candida antarctica lipase B-displaying yeast whole-cell biocatalyst and its application to the polyester synthesis reaction. Appl Microbiol Biotechnol 82:59–66

    Article  CAS  Google Scholar 

  • Tsuboi M, Takahashi T (1988) Genetic analysis of the non-sporulating phenotype of brewer’s yeasts. J Ferment Technol 66:605–613

    Article  CAS  Google Scholar 

  • Van der Berg J, van der Laken K, van Ooyen A, Renniers T, Rietvld K, Schaap A, Brake A, Bishop R, Schutz K, Moyer D, Richma M, Shuste J (1990) Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/Technol 8:185–192

    Article  Google Scholar 

  • Wang X, Wang Z, Da Silva NA (1996) G418 selection and stability of cloned genes integrated at the chromosomal δ sequences of Saccharomyces cerevisiae. Biotechnol Bioeng 49:45–51

    Article  CAS  Google Scholar 

  • Wang YC, Chuang LL, Lee FW, Da Silva NA (2003) Sequential cloned gene integration in the yeast Kluyveromyces lactis. Appl Microbiol Biotechnol 62:523–527

    Article  CAS  Google Scholar 

  • Yamada R, Bito Y, Adachi T, Tanaka T, Ogino C, Fukuda H, Kondo A (2009) Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated alpha-amylase and glucoamylase genes. Enz Microbiol Technol 44:344–349

    Article  CAS  Google Scholar 

  • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2010a) Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact 14:32

    Article  CAS  Google Scholar 

  • Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010b) Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85:1491–1498

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was mainly supported by Special Coordination Funds for Promoting Science and Technology, Creation of Innovation Centers for Advanced Interdisciplinary Research Areas (Innovative Bioproduction Kobe), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, R., Tanaka, T., Ogino, C. et al. Gene copy number and polyploidy on products formation in yeast. Appl Microbiol Biotechnol 88, 849–857 (2010). https://doi.org/10.1007/s00253-010-2850-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2850-6

Keywords

Navigation