Skip to main content
Log in

Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Trichoderma reesei Xyn III, an endo-β-1,4-xylanase belonging to glycoside hydrolase family 10 (GH10), is vital for the saccharification of xylans in plant biomass. However, its enzymatic thermostability and hydrolytic activity on insoluble substrates are low. To overcome these difficulties, the thermostability of Xyn III was improved using random mutagenesis and directed evolution, and its hydrolytic activity on insoluble substrates was improved by creating a chimeric protein. In the screening of thermostable Xyn III mutants from a random mutagenesis library, we identified two amino acid residues, Gln286 and Asn340, which are important for the thermostability of Xyn III. The Xyn III Gln286Ala/Asn340Tyr mutant showed xylanase activity even after heat treatment at 60 °C for 30 min or 50 °C for 96 h, indicating a dramatic enhancement in thermostability. In addition, we found that the addition of a xylan-binding domain (XBD) to the C-terminal of Xyn III improved its hydrolytic activity on insoluble xylan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Biely P, Vrsanská M, Claeyssens M (1991) The endo-1,4-β-glucanase I from Trichoderma reesei. Action on β-1,4-oligomers and polymers derived from d-glucose and d-xylose. Eur J Biochem 200:157–163

    Article  CAS  PubMed  Google Scholar 

  • Biely P, Vrsanská M, Tenkanen M, Kluepfel D (1997) Endo-β-xylanase families: differences in catalytic properties. J Biotehnol 57:151–166

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Fenel F, Zitting AJ, Kantelinen A (2006) Increased alkali stability in Trichoderma reesei endo-1,4-β-xylanase II by site directed mutagenesis. J Biotechnol 121:102–107

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Haarmeyer C, Balan V, Whitehead TA, Dale BE, Chundawat SP (2014) Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. Biotechnol Biofuels 7:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Grishutin SG, Gusakov AV, Markov AV, Ustinov BB, Semenova MV, Sinitsyn AP (2004) Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim Biophys Acta 1674:268–281

    Article  CAS  PubMed  Google Scholar 

  • Hokanson CA, Cappuccilli G, Odineca T, Bozic M, Behnke CA, Mendez M, Coleman WJ, Crea R (2011) Engineering highly thermostable xylanase variants using an enhanced combinatorial library methods. Protein Eng Des Sel 24:597–605

    Article  CAS  PubMed  Google Scholar 

  • Jun H, Bing Y, Keying Z, Xuemei D, Daiwen C (2009) Thermostable carbohydrate binding module increases the thermostability and substrate-binding capacity of Trichoderma reesei xylanase 2. New Biotechnol 26:53–59

    Article  Google Scholar 

  • Kawai T, Nakazawa H, Ida N, Okada H, Tani S, Sumitani J, Kawaguchi T, Ogasawara W, Morikawa Y, Kobayashi Y (2012) Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomass through a comparison with commercially available counterparts. J Ind Microbiol Biotechnol 39:1741–1749

    Article  CAS  PubMed  Google Scholar 

  • Kormelink FJM, Vorage AGJ (1993) Degradation of different [(glucurono)arabino]xylans by a combination of purified xylan-degradation enzymes. Appl Microbiol Biotechnol 38:688–695

    Article  CAS  Google Scholar 

  • Kuno A, Kaneko S, Ohtsuki H, Ito S, Fujimoto Z, Mizuno H, Hasegawa T, Taira K, Kusakabe I, Hayashi K (2000) Novel sugar-binding specificity of the type XIII xylan-binding domain of a family F/10 xylanase from Streptomyces olivaceoviridis E-86. FEBS Lett 482:231–236

    Article  CAS  PubMed  Google Scholar 

  • Li H, Murtomäki L, Leisola M, Turunen O (2012) The effect of thermostabilising mutations on the pressure stability of Trichoderma reesei GH11 xylanase. Protein Eng Des Sel 25:821–826

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Zhong KX, Hu AH, Liu DN, Chen LZ, Xu SD (2015) High-level expression and characterization of a thermostable xylanase mutant from Trichoderma reesei in Pichia pastoris. Protein Expr Purif 108:90–96

    Article  CAS  PubMed  Google Scholar 

  • Liao H, Zheng H, Li S, Wei Z, Mei X, Ma H, Shen Q, Xu Y (2015) Functional diversity and properties of multiple xylanases from Penicillium oxalicum GZ-2. Sci Rep 5:12631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Huang L, Li W, Guo W, Zheng H, Wang J, Lu F (2015) Studies on properties of the xylan-binding domain and linker sequence of xylanase XynG1-1 from Paenibacillus campinasensis G1-1. J Ind Microbiol Biotechnol 42:1591–1599

    Article  CAS  PubMed  Google Scholar 

  • Lou H, Wang M, Lai H, Lin X, Zhou M, Yang D, Qiu K (2013) Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresour Technol 146:478–484

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolles-Clark E, Tenkanen M, Nakari-Setälä T, Penttilä M (1996) Cloning of genes encoding α-l-arabinofuranosidase and β-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 62:3840–3846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzawa T, Kaneko S, Yaoi K (2015) Screening, identification and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase useful for biomass saccharification from a compost microbial metagenome. Appl Microbiol Biotech 99:8943–8954

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Nakazawa H, Kawai T, Ida N, Shida Y, Shioya K, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W (2016) A high performance Trichoderma reesei strain that reveals the importance of xylanase III in cellulosic biomass conversion. Enzym Microb Technol 82:89–95

    Article  CAS  Google Scholar 

  • Ogasawara W, Shida Y, Furukawa T, Shimada R, Nakagawa S, Kawamura M, Yagyu T, Kosuge A, Xu J, Nogawa M, Okada H, Morikawa Y (2006) Cloning, functional expression and promoter analysis of xylanase III gene from Trichoderma reesei. Appl Microbiol Biotechnol 72:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Pérez-González JA, van Peij NN, Bezoen A, MacCabe AP, Ramón D, de Graaff LH (1998) Molecular cloning and transcriptional regulation of the Aspergillus nidulans xlnD gene encoding a β-xylosidase. Appl Environ Microbiol 64:1412–1419

    PubMed  PubMed Central  Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology 158:58–68

    Article  CAS  PubMed  Google Scholar 

  • Pribowo A, Arantes V, Saddler JN (2012) The absorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Enzyme Microb Technol 50:195–203

    Article  CAS  PubMed  Google Scholar 

  • Saarelainen R, Paloheimo M, Fagerström R, Suominen PL, Nevalainen KM (1993) Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI9) gene xyn2. Mol Gen Genet 241:497–503

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  PubMed  Google Scholar 

  • Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y (2005) Biochemical characterization and identification of the catalytic residues of a family 43 β-d-xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 44:387–397

    Article  CAS  PubMed  Google Scholar 

  • Sørensen A, Lübeck M, Lübeck PS, Ahring BK (2013) Fungal β-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 3:612–631

    Article  PubMed  PubMed Central  Google Scholar 

  • Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA (1998) Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans 26:173–178

    Article  CAS  PubMed  Google Scholar 

  • Tenkanen M, Puls J, Poutanen K (1992) Two major xylanases of Trichoderma reesei. Enzyme Microb Technol 14:566–574

    Article  CAS  Google Scholar 

  • Tenkanen M, Vrsanská M, Siika-aho M, Wong DW, Puchart V, Penttilä M, Saloheimo M, Biely P (2013) Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity. FEBS J 280:285–301

    Article  CAS  PubMed  Google Scholar 

  • Törrönen A, Mach RL, Messner R, Gonzalez R, Kalkkinen N, Harkki A, Kubicek CP (1992) The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology (NY) 10:1461–1465

    Article  Google Scholar 

  • Turunen O, Vuorio M, Fenel F, Leisola M (2002) Engineering of multiple arginines into Ser/Thr surface of Trichoderma reesei endo-1,4-β-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Eng 15:141–145

    Article  CAS  PubMed  Google Scholar 

  • Várnai A, Viikari L, Marjamaa K, Siika-aho M (2011) Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Bioresour Technol 102:1220–1227

    Article  PubMed  Google Scholar 

  • Xiong H, Fenel F, Leisola M, Turunen O (2004) Engineering the thermostability of Trichoderma reesei endo-1,4-β-xylanase II by combination of disulphide binding. Extremophiles 8:393–400

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Takakuwa N, Nogawa M, Okada H, Morikawa Y (1998) A third xylanase from Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 49:718–724

    Article  CAS  Google Scholar 

  • Xu J, Nogawa M, Okada H, Morikawa K (2000) Regulation of xyn3 gene expression in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 54:370–375

    Article  CAS  PubMed  Google Scholar 

  • Yazawa R, Takakura J, Sakata T, Ihsanawati, Yatsunami R, Fukui T, Kumasaka T, Tanaka N, Nakamura S (2011) A calcium-dependent xylan-binding domain of alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Biosci Biotechnol Biochem 75:379–381

    Article  CAS  PubMed  Google Scholar 

  • Zouari Ayadi D, Hmida Sayari A, Ben Mabrouk S, Mezghani M, Bejar S (2015) Improvement of Trichoderma reesei xylanase II thermal stability by serine to threonine surface mutations. Int J Biol Macromol 72:163–170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yuko Chujo and Akiko Yamanaka (AIST) for assistance in screening of thermostable Xyn III mutants and protein purification. This work was supported in part by grants from the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuro Yaoi.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuzawa, T., Kaneko, S. & Yaoi, K. Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates. Appl Microbiol Biotechnol 100, 8043–8051 (2016). https://doi.org/10.1007/s00253-016-7563-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7563-z

Keywords

Navigation