Skip to main content
Log in

Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this research, we have demonstrated the ability of several yeast species to mediate U(VI) biomineralization through uranium phosphate biomineral formation when utilizing an organic source of phosphorus (glycerol 2-phosphate disodium salt hydrate (C3H7Na2O6xH2O (G2P)) or phytic acid sodium salt hydrate (C6H18O24P6·xNa+·yH2O (PyA))) in the presence of soluble UO2(NO3)2. The formation of meta-ankoleite (K2(UO2)2(PO4)2·6(H2O)), chernikovite ((H3O)2(UO2)2(PO4)2·6(H2O)), bassetite (Fe++(UO2)2(PO4)2·8(H2O)), and uramphite ((NH4)(UO2)(PO4)·3(H2O)) on cell surfaces was confirmed by X-ray diffraction in yeasts grown in a defined liquid medium amended with uranium and an organic phosphorus source, as well as in yeasts pre-grown in organic phosphorus-containing media and then subsequently exposed to UO2(NO3)2. The resulting minerals depended on the yeast species as well as physico-chemical conditions. The results obtained in this study demonstrate that phosphatase-mediated uranium biomineralization can occur in yeasts supplied with an organic phosphate substrate as sole source of phosphorus. Further understanding of yeast interactions with uranium may be relevant to development of potential treatment methods for uranium waste and utilization of organic phosphate sources and for prediction of microbial impacts on the fate of uranium in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andres Y, MacCordick HJ, Hubert JC (1993) Adsorption of several actinide (Th, U) and lanthanide (La, Eu, Yb) ions by Mycobacterium smegmatis. Appl Microbiol Biotechnol 39:413–417

    Article  CAS  Google Scholar 

  • Andres Y, MacCordick HJ, Hubert JC (1994) Binding sites of sorbed uranyl ion in the cell wall of Mycobacterium smegmatis. FEMS Microbiol Lett 115:27–32

    Article  CAS  PubMed  Google Scholar 

  • Aytas S, Turkozu DA, Gok C (2011) Biosorption of uranium(VI) by bi-functionalized low cost biocomposite adsorbent. Desalination 280:354–362

    Article  CAS  Google Scholar 

  • Fernandes L, Lucas MS, Maldonado MI, Oller I, Sampaio A (2014) Treatment of pulp mill wastewater by Cryptococcus podzolicus and solar photo-Fenton: a case study. Chem Eng J 245:158–165

    Article  CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresource Technol 160:3–14

    Article  CAS  Google Scholar 

  • Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM (2007) Fungal transformations of uranium oxides. Environ Microbiol 9:1696–1710

    Article  CAS  PubMed  Google Scholar 

  • Fomina M, Charnock JM, Hillier S, Alvarez R, Livens F, Gadd GM (2008) Role of fungi in the biogeochemical fate of depleted uranium. Curr Biol 18:375–377

    Article  Google Scholar 

  • Fowle DA, Fein JB, Martin AM (2000) Experimental study of uranyl adsorption onto Bacillus subtilis. Environ Sci Technol 34:3737–3741

    Article  CAS  Google Scholar 

  • Francis AJ, Gillow JB, Dodge CJ, Harris R, Beveridge TJ, Papenguth HW (2004) Uranium association with halophilic and non-halophilic bacteria and archaea. Radiochim Acta 92:481–488

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM, Fomina M (2011) Uranium and fungi. Geomicrobiol J 28:471–482

    Article  CAS  Google Scholar 

  • Gorman-Lewis D, Elias PE, Fein JB (2005) Adsorption of aqueous uranyl complexes onto Bacillus subtilis cells. Environ Sci Technol 39:4906–4912

    Article  CAS  PubMed  Google Scholar 

  • Haas JH, Dichristina TJ, Wade R Jr (2001) Thermodynamics of U(VI) sorption onto Shewanella putrifaciens. Chem Geol 180:33–54

    Article  CAS  Google Scholar 

  • Holland SL, Dyer PS, Bond CJ, James SA, Roberts IN, Avery SV (2011) Candida argentea sp. nov., a copper and silver resistant yeast species. Fungal Biol 115:909–918

    Article  CAS  PubMed  Google Scholar 

  • Holland SL, Reader T, Dyer PS, Avery SV (2014) Phenotypic heterogeneity is a selected trait in natural yeast populations subject to environmental stress. Environ Microbiol 16:1729–1740

    Article  PubMed  PubMed Central  Google Scholar 

  • Irving GCJ, McLaughlin MJ (1990) A rapid and simple field test for phosphorus in Olsen and Bray No. 1 extracts of soil. Commun Soil Sci Plan 21:2245–2255

    Article  CAS  Google Scholar 

  • Kalin M, Wheeler WN, Meinrath G (2004) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioactiv 78:151–177

    Article  Google Scholar 

  • Kazy SK, D’Souza SF, Sar P (2009) Uranium and thorium sequestration by a Pseudomonas sp.: mechanism and chemical characterization. J Hazard Mater 163:65–72

    Article  CAS  PubMed  Google Scholar 

  • Khijniak TV, Slobodkin AI, Coker V, Renshaw JC, Livens FR, Bonch-Osmolovskaya EA, Birkeland NK, Medvedeva-Lyalikova NN, Lloyd JR (2005) Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens. Appl Environ Microbiol 71:6423–6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Ac 42:547–569

    Article  CAS  Google Scholar 

  • Liang X, Hillier S, Pendlowski H, Gray N, Ceci A, Gadd GM (2015) Uranium phosphate biomineralization by fungi. Environ Microbiol 17:2064–2075

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Csetenyi L, Gadd GM (2016) Lead bioprecipitation by yeasts utilizing organic phosphorus substrates. Geomicrobiol J (in press)

  • Llorens I, Untereiner G, Jaillard D, Gouget B, Chapon V, Carriere M (2012) Uranium interaction with two multi-resistant environmental bacteria: Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris. PLoS One 7:e51783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Phillips EJP (1992) Bioremediation of uranium contamination with enzymatic uranium reduction. Environ Sci Technol 26:2228–2234

    Article  CAS  Google Scholar 

  • Macaskie LE, Empson RM, Cheetham AK, Grey CPA, Skarnuli J (1992) Uranium bioaccumulation by a Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline HUO2PO4. Science 257:782–784

    Article  CAS  PubMed  Google Scholar 

  • Macaskie LE, Jeong BC, Tolley MR (1994) Enzymically accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows. FEMS Microbiol Rev 14:351–367

    Article  CAS  PubMed  Google Scholar 

  • Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867

    Article  CAS  PubMed  Google Scholar 

  • Martinez RJ, Beazley MJ, Taillefert M, Arakaki AK, Skolnick J, Sobecky PA (2007) Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Environ Microbiol 9:3122–3133

    Article  CAS  PubMed  Google Scholar 

  • Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  • Nilgiriwala KS, Alahari A, Rao AS, Apte SK (2008) Cloning and overexpression of alkaline phosphatase PhoK from Sphingomonas sp. strain BSAR-1 for bioprecipitation of uranium from alkaline solutions. Appl Environ Microbiol 74:5516–5523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnuki T, Ozaki T, Yoshida T, Sakamoto F, Kozai N, Wakai E, Francis AJ, Iefuji H (2005) Mechanisms of uranium mineralization by the yeast Saccharomyces cerevisiae. Geochim Cosmochim Ac 69:5307–5316

    Article  CAS  Google Scholar 

  • Panak P, Raff J, Selenska-Pobell S, Geipel G, Bernhard G, Nitsche H (2000) Complex formation of U(VI) with Bacillus-isolates from a uranium mining waste pile. Radiochim Acta 88:71–76

    Article  CAS  Google Scholar 

  • Paterson-Beedle M, Readman JE, Hriljac JA, Macaskie LE (2010) Biorecovery of uranium from aqueous solutions at the expense of phytic acid. Hydrometallurgy 104:524–528

    Article  CAS  Google Scholar 

  • Ray AE, Bargar JR, Sivaswamy V, Dohnalkova AC, Fujita Y, Peyton BM, Magnuson TS (2011) Evidence for multiple modes of uranium immobilization by an anaerobic bacterium. Geochim Cosmochim Ac 75:2684–2695

    Article  CAS  Google Scholar 

  • Sakamoto F, Ohnuki T, Kozai N, Wakai E, Fujii T, Iefuji H, Francis AJ (2005) Effect of uranium (VI) on the growth of yeast and influence of metabolism of yeast on adsorption of U(VI). J Nucl Radiochem Sci 6:99–101

    Article  CAS  Google Scholar 

  • Sakamoto F, Nanikawa T, Kozai N, Fujii T, Iefuji H, Francis AJ, Ohnuki T (2007) Protein expression of Saccharomyces cerevisiae in response to uranium exposure. J Nucl Radiochem Sci 8:133–136

    Article  CAS  Google Scholar 

  • Sarri S, Misaelides P, Papanikolaou M, Zamboulis D (2009) Uranium removal from acidic aqueous solutions by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa. J Radioanal Nucl Ch 279:709–711

    Article  CAS  Google Scholar 

  • Sheng L, Fein JB (2013) Uranium adsorption by Shewanella oneidensis MR-1 as a function of dissolved inorganic carbon concentration. Chem Geol 358:15–22

    Article  CAS  Google Scholar 

  • Sivaswamy V, Boyanov MI, Peyton BM, Viamajala S, Gerlach R, Apel WA, Sani RK, Dohnalkova A, Kemner KM, Borch T (2011) Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6. Biotechnol Bioeng 108:264–276

    Article  CAS  PubMed  Google Scholar 

  • Soares E, Duarte A, Boaventura R, Soares H (2002) Viability and release of complexing compounds during accumulation of heavy metals by a brewer's yeast. Appl Microbiol Biotechnol 58:836–841

    Article  CAS  PubMed  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  PubMed  Google Scholar 

  • Volesky B, May-Philips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:797–806

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Liang X, Pendlowski H, Hillier S, Suntornvongsagul K, Sihanonth P, Gadd GM (2013) Fungal biotransformation of zinc silicate and sulfide mineral ores. Environ Microbiol 15:2173–2186

    Article  CAS  PubMed  Google Scholar 

  • Worsham PL, Bolen PL (1990) Killer toxin production in Pichia acaciae is associated with linear DNA plasmids. Curr Genet 18:77–80

    Article  CAS  PubMed  Google Scholar 

  • Yong P, Macaskie LE (1995) Role of citrate as complexing ligand which permits enzymatically-mediated uranyl ion bioaccumulation. B Environ Contam Tox 54:892–899

    Article  CAS  Google Scholar 

  • Yung MC, Jiao Y (2014) Biomineralization of uranium by PhoY phosphatase activity aids cell survival in Caulobacter crescentus. Appl Environ Microbiol 80:4795–4804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yung MC, Ma J, Salemi MR, Phinney BS, Bowman GR, Jiao Y (2014) Shotgun proteomic analysis unveils survival and detoxification strategies by Caulobacter crescentus during exposure to uranium, chromium, and cadmium. J Proteome Res 13:1833–1847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the assistance of Martin Kierans (Electron Microscopy, Central Imaging Facility, Centre for Advanced Scientific Technologies, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland UK) for assistance with scanning electron microscopy. We thank Yongchang Fan (Division of Physics, University of Dundee, Dundee, DD1 4HN, Scotland UK) for assistance with X-ray microanalysis. G. M. Gadd also gratefully acknowledges an award under the Chinese Government’s 1000 Talents Plan with the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Michael Gadd.

Ethics declarations

The authors confirm that ethical principles have been applied in this study.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Csetenyi, L. & Gadd, G.M. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates. Appl Microbiol Biotechnol 100, 5141–5151 (2016). https://doi.org/10.1007/s00253-016-7327-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7327-9

Keywords

Navigation