Skip to main content

Advertisement

Log in

Phosphorus adsorption by functionalized biochar: a review

  • ReviewPaper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Phosphorus is essential element for agricultural production, yet phosphorus ore resources are non-renewable and become depleted. Moreover, phosphate release from wastewater treatment plants and from inefficient crop fertilization induces pollution such as water eutrophication. Therefore, phosphorus recovery from wastewater is promising alternative source of agricultural phosphorus. Biochar can be used to adsorb phosphorus due to their porous structure, large surface area, abundant surface groups, and high mineral content of biochars. Biochar can be functionalized to improve their adsorption performance. Here, we review phosphorus recovery by functionalized biochar, with focus on biochar preparation and modification, factors influencing the efficiency of adsorption, adsorption mechanisms, and biochars as slow-release  fertilizers. We discuss mechanisms for Mg-, Ca- and Fe-rich biochars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  • Ahmed MB, Zhou JL, Ngo HH, Guo W, Chen M (2016) Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Biores Technol 214:836–851

    Article  CAS  Google Scholar 

  • Al-Ghouti MA, Da’ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater 393:122383

    Article  CAS  Google Scholar 

  • Ambaye TG, Vaccari M, van Hullebusch ED, Amrane A, Rtimi S (2021) Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int J Environ Sci Technol 18(10):3273–3294

    Article  CAS  Google Scholar 

  • An X, Wu Z, Yu J, Ge L, Li T, Liu X, Yu B (2020) High-efficiency reclaiming phosphate from an aqueous solution by bentonite modified biochars: a slow release fertilizer with a precise rate regulation. ACS Sustain Chem Eng 8(15):6090–6099

    Article  CAS  Google Scholar 

  • An X, Wu Z, Liu X, Shi W, Tian F, Yu B (2021) A new class of biochar-based slow-release phosphorus fertilizers with high water retention based on integrated co-pyrolysis and co-polymerization. Chemosphere 285:131481

    Article  CAS  Google Scholar 

  • Antunes E, Jacob MV, Brodie G, Schneider PA (2018) Isotherms, kinetics and mechanism analysis of phosphorus recovery from aqueous solution by calcium-rich biochar produced from biosolids via microwave pyrolysis. J Environ Chem Eng 6(1):395–403

    Article  CAS  Google Scholar 

  • Ayawei N, Ekubo AT, Wankasi D, Dikio ED (2015) Adsorption of congo red by Ni/Al-CO3: equilibrium, thermodynamic and kinetic studies. Orient J Chem 31(3):1307

    Article  CAS  Google Scholar 

  • Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:1–11

    Article  Google Scholar 

  • Azargohar R, Dalai AK (2008) Steam and KOH activation of biochar: experimental and modeling studies. Microporous Mesoporous Mater 110(2–3):413–421

    Article  CAS  Google Scholar 

  • Benavente V, Fullana A (2015) Torrefaction of olive mill waste. Biomass Bioenerg 73:186–194

    Article  CAS  Google Scholar 

  • Benjamin MM, Lawler DF (2013) Water quality engineering: physical/chemical treatment processes. Wiley, New York

    Google Scholar 

  • Bhatia SK, Palai AK, Kumar A, Bhatia RK, Patel AK, Thakur VK, Yang YH (2021) Trends in renewable energy production employing biomass-based biochar. Biores Technol 340:125644

    Article  Google Scholar 

  • Chen S, Yang M, Ba C, Yu S, Jiang Y, Zou H, Zhang Y (2018a) Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. Sci Total Environ 615:431–437

    Article  CAS  Google Scholar 

  • Chen Q, Qin J, Sun P, Cheng Z, Shen G (2018b) Cow dung-derived engineered biochar for reclaiming phosphate from aqueous solution and its validation as slow-release fertilizer in soil-crop system. J Clean Prod 172:2009–2018

    Article  CAS  Google Scholar 

  • Chen C, Liu G, An Q, Lin L, Shang Y, Wan C (2020) From wasted sludge to valuable biochar by low temperature hydrothermal carbonization treatment: insight into the surface characteristics. J Clean Prod 263:121600

    Article  CAS  Google Scholar 

  • Cheng N, Wang B, Feng Q, Zhang X, Chen M (2021) Co-adsorption performance and mechanism of nitrogen and phosphorus onto eupatorium adenophorum biochar in water. Biores Technol 340:125696

    Article  CAS  Google Scholar 

  • Chu Q, Lyu T, Xue L, Yang L, Feng Y, Sha Z, Pan G (2021) Hydrothermal carbonization of microalgae for phosphorus recycling from wastewater to crop-soil systems as slow-release fertilizers. J Clean Prod 283:124627

    Article  CAS  Google Scholar 

  • Cui R, Zhang Y, Guo J, Guo Z, Xiao Y (2019) Development strategy of phosphate rock in China under global allocation of resources. Strateg Study Chin Acad Eng 21(1):128–132

    Google Scholar 

  • Cui Q, Xu J, Wang W, Tan L, Cui Y, Wang T, Zheng J (2020) Phosphorus recovery by core-shell γ-Al2O3/Fe3O4 biochar composite from aqueous phosphate solutions. Sci Total Environ 729:138892

    Article  CAS  Google Scholar 

  • Dai L, Wu B, Tan F, He M, Wang W, Qin H, Hu Q (2014) Engineered hydrochar composites for phosphorus removal/recovery: lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw. Biores Technol 161:327–332

    Article  CAS  Google Scholar 

  • Dai L, Tan F, Li H, Zhu N, He M, Zhu Q, Zhao J (2017) Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. J Environ Manag 198:70–74

    Article  CAS  Google Scholar 

  • Dai Y, Wang W, Lu L, Yan L, Yu D (2020) Utilization of biochar for the removal of nitrogen and phosphorus. J Clean Prod 257:120573

    Article  CAS  Google Scholar 

  • Das SK, Ghosh GK (2022) Hydrogel-biochar composite for agricultural applications and controlled release fertilizer: a step towards pollution free environment. Energy 242:122977

    Article  CAS  Google Scholar 

  • de Mendonça FG, da Cunha IT, Soares RR, Tristão JC, Lago RM (2017) Tuning the surface properties of biochar by thermal treatment. Biores Technol 246:28–33

    Article  Google Scholar 

  • Deng Y, Li M, Zhang Z, Liu Q, Jiang K, Tian J, Ni F (2021) Comparative study on characteristics and mechanism of phosphate adsorption on Mg/Al modified biochar. J Environ Chem Eng 9(2):105079

    Article  CAS  Google Scholar 

  • Ding Z, Hu X, Wan Y, Wang S, Gao B (2016) Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests. J Ind Eng Chem 33:239–245

    Article  CAS  Google Scholar 

  • Eduah JO, Nartey EK, Abekoe MK, Henriksen SW, Andersen MN (2020) Mechanism of orthophosphate (PO4-P) adsorption onto different biochars. Environ Technol Innov 17:100572

    Article  Google Scholar 

  • Ehis-Eriakha CB, Chioma BC, Onyewuchi A (2021) Sustained nutrient delivery system: a new perspective in bioremediation. J Soil Sci Environ Manag 12(4):173–182

    Article  Google Scholar 

  • Elser J, Bennett E (2011) A broken biogeochemical cycle. Nature 478(7367):29–31

    Article  CAS  Google Scholar 

  • Ezzati R (2020) Derivation of pseudo-first-order, pseudo-second-order, and modified pseudo-first-order rate equations from Langmuir and Freundlich isotherms for adsorption. Chem Eng J 392:123705

    Article  CAS  Google Scholar 

  • Fang C, Zhang T, Li P, Jiang RF, Wang YC (2014) Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater. Int J Environ Res Public Health 11(9):9217–9237

    Article  Google Scholar 

  • Fang L, Li JS, Donatello S, Cheeseman CR, Poon CS, Tsang DC (2020) Use of Mg/Ca modified biochars to take up phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer application. J Clean Prod 244:118853

    Article  CAS  Google Scholar 

  • Feng Y, Luo Y, He Q, Zhao D, Zhang K, Shen S, Wang F (2021) Performance and mechanism of a biochar-based Ca-La composite for the adsorption of phosphate from water. J Environ Chem Eng 9(3):105267

    Article  CAS  Google Scholar 

  • Fertahi S, Ilsouk M, Zeroual Y, Oukarroum A, Barakat A (2021) Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. J Control Release 330:341–361

    Article  CAS  Google Scholar 

  • Flanagan DC, Norton LD, Peterson JR, Chaudhari K (2003) Using polyacrylamide to control erosion on agricultural and disturbeds soils in rainfed areas. J Soil Water Conserv 58(5):301–311

    Google Scholar 

  • Fungo B, Guerena D, Thiongo M, Lehmann J, Neufeldt H, Kalbitz K (2014) N2O and CH4 emission from soil amended with steam-activated biochar. J Plant Nutr Soil Sci 177(1):34–38

    Article  Google Scholar 

  • Gascó G, Paz-Ferreiro J, Álvarez ML, Saa A, Méndez A (2018) Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure. Waste Manag 79:395–403

    Article  Google Scholar 

  • Gibbons KJ, Bridgeman TB (2020) Effect of temperature on phosphorus flux from anoxic western Lake Erie sediments. Water Res 182:116022

    Article  CAS  Google Scholar 

  • Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12(2):504–517

    Article  CAS  Google Scholar 

  • Günther S, Grunert M, Müller S (2018) Overview of recent advances in phosphorus recovery for fertilizer production. Eng Life Sci 18(7):434–439

    Article  Google Scholar 

  • Gupta SS, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Coll Interface Sci 162(1–2):39–58

    Article  Google Scholar 

  • Han B, Song L, Li H, Song H (2021) Immobilization of Cd and phosphorus utilization in eutrophic river sediments by biochar-supported nanoscale zero-valent iron. Environ Technol 42(26):4072–4078

    Article  CAS  Google Scholar 

  • Hansen V, Müller-Stöver D, Munkholm LJ, Peltre C, Hauggaard-Nielsen H, Jensen LS (2016) The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: an incubation study. Geoderma 269:99–107

    Article  CAS  Google Scholar 

  • He X, Zhang T, Ren H, Li G, Ding L, Pawlowski L (2017) Phosphorus recovery from biogas slurry by ultrasound/H2O2 digestion coupled with HFO/biochar adsorption process. Waste Manag 60:219–229

    Article  CAS  Google Scholar 

  • He M, Xu Z, Sun Y, Chan PS, Lui I, Tsang DC (2021) Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. Bioresour Technol 341:125811

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76(4):332–340

    Article  CAS  Google Scholar 

  • Hosseini SH, Niyungeko C, Khan S, Liang X (2021) Effects of superabsorbent polyacrylamide hydrogel and gypsum applications on colloidal phosphorus release from agricultural soils. J Soils Sediments 21(2):925–935

    Article  CAS  Google Scholar 

  • Hou L, Liang Q, Wang F (2020) Mechanisms that control the adsorption–desorption behavior of phosphate on magnetite nanoparticles: the role of particle size and surface chemistry characteristics. RSC Adv 10(4):2378–2388

    Article  CAS  Google Scholar 

  • Huang Y, Lee X, Grattieri M, Yuan M, Cai R, Macazo FC, Minteer SD (2020) Modified biochar for phosphate adsorption in environmentally relevant conditions. Chem Eng J 380:122375

    Article  CAS  Google Scholar 

  • Huang R, Yang J, Cao Y, Dionysiou DD, Wang C (2022) Peroxymonosulfate catalytic degradation of persistent organic pollutants by engineered catalyst of self-doped iron/carbon nanocomposite derived from waste toner powder. Sep Purif Technol 291(20):120963. https://doi.org/10.1016/j.seppur.2022.120963

    Article  CAS  Google Scholar 

  • Ioannidou O, Zabaniotou A (2007) Agricultural residues as precursors for activated carbon production—a review. Renew Sustain Energy Rev 11(9):1966–2005

    Article  CAS  Google Scholar 

  • Jian X, Zhuang X, Li B, Xu X, Wei Z, Song Y, Jiang E (2018) Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis. Environ Technol Innov 10:27–35

    Article  Google Scholar 

  • Jiang YH, Li AY, Deng H, Ye CH, Wu YQ, Linmu YD, Hang HL (2019) Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks. Bioresour Technol 276:183–189

    Article  CAS  Google Scholar 

  • Jiao Y, Li D, Wang M, Gong T, Sun M, Yang T (2021) A scientometric review of biochar preparation research from 2006 to 2019. Biochar 3(3):283–298

    Article  Google Scholar 

  • Jung KW, Jeong TU, Kang HJ, Ahn KH (2016) Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution. Bioresour Technol 211:108–116

    Article  CAS  Google Scholar 

  • Jung KW, Lee S, Lee YJ (2017) Synthesis of novel magnesium ferrite (MgFe2O4)/biochar magnetic composites and its adsorption behavior for phosphate in aqueous solutions. Bioresour Technol 245:751–759

    Article  CAS  Google Scholar 

  • Jupp AR, Beijer S, Narain GC, Schipper W, Slootweg JC (2021) Phosphorus recovery and recycling–closing the loop. Chem Soc Rev 50(1):87–101

    Article  CAS  Google Scholar 

  • Kang Z, Jia X, Zhang Y, Kang X, Ge M, Liu D, He Z (2022) A review on application of biochar in the removal of pharmaceutical pollutants through adsorption and persulfate-based AOPs. Sustainability 14(16):10128

    Article  CAS  Google Scholar 

  • Karunanithi R, Ok YS, Dharmarajan R, Ahmad M, Seshadri B, Bolan N, Naidu R (2017) Sorption, kinetics and thermodynamics of phosphate sorption onto soybean stover derived biochar. Environ Technol Innov 8:113–125

    Article  Google Scholar 

  • Khan HA, Naqvi SR, Mehran MT, Khoja AH, Niazi MBK, Juchelková D, Atabani A (2021) A performance evaluation study of nano-biochar as a potential slow-release nano-fertilizer from wheat straw residue for sustainable agriculture. Chemosphere 285:131382

    Article  CAS  Google Scholar 

  • Kosmulski M (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 337(2):439–448

    Article  CAS  Google Scholar 

  • Kumar M, Xiong X, Wan Z, Sun Y, Tsang DC, Gupta J, Ok YS (2020) Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour Technol 312:123613

    Article  CAS  Google Scholar 

  • Kumari N, Chhabra T, Kumar A, Krishnan V (2021) Bioderived carbon supported bismuth molybdate nanocomposites as bifunctional catalysts for removal of organic pollutants: adsorption and photocatalytic studies. Mater Lett 302:130455

    Article  CAS  Google Scholar 

  • Kwak JH, Islam MS, Wang S, Messele SA, Naeth MA, El-Din MG, Chang SX (2019) Biochar properties and lead (II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere 231:393–404

    Article  CAS  Google Scholar 

  • Lam SS, Yek PNY, Ok YS, Chong CC, Liew RK, Tsang DC, Peng W (2020) Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. J Hazard Mater 390:121649

    Article  CAS  Google Scholar 

  • Lateef A, Nazir R, Jamil N, Alam S, Shah R, Khan MN, Saleem M (2019) Synthesis and characterization of environmental friendly corncob biochar based nano-composite—a potential slow release nano-fertilizer for sustainable agriculture. Environ Nanotechnol Monit Manag 11:100212

    Google Scholar 

  • Li R, Wang JJ, Zhou B, Awasthi MK, Ali A, Zhang Z, Mahar A (2016) Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Bioresour Technol 215:209–214

    Article  CAS  Google Scholar 

  • Li R, Wang JJ, Zhang Z, Awasthi MK, Du D, Dang P, Wang L (2018) Recovery of phosphate and dissolved organic matter from aqueous solution using a novel CaO-MgO hybrid carbon composite and its feasibility in phosphorus recycling. Sci Total Environ 642:526–536

    Article  CAS  Google Scholar 

  • Li X, Wang C, Zhang J, Liu J, Liu B, Chen G (2020a) Preparation and application of magnetic biochar in water treatment: a critical review. Sci Total Environ 711:134847

    Article  CAS  Google Scholar 

  • Li J, Li B, Huang H, Zhao N, Zhang M, Cao L (2020b) Investigation into lanthanum-coated biochar obtained from urban dewatered sewage sludge for enhanced phosphate adsorption. Sci Total Environ 714:136839

    Article  CAS  Google Scholar 

  • Li F, Men S, Zhang S, Huang J, Puyang X, Wu Z, Huang Z (2020c) Responses of low-quality soil microbial community structure and activities to application of a mixed material of humic acid, biochar, and super absorbent polymer. J Microbiol Biotechnol 30:1310–1320

    Article  CAS  Google Scholar 

  • Li B, Jing F, Hu Z, Liu Y, Xiao B, Guo D (2021a) Simultaneous recovery of nitrogen and phosphorus from biogas slurry by Fe-modified biochar. J Saudi Chem Soc 25(4):101213

    Article  CAS  Google Scholar 

  • Li H, Ji H, Cui X, Che X, Zhang Q, Zhong J, Luo Y (2021b) Kinetics, thermodynamics, and equilibrium of As (III), Cd (II), Cu (II) and Pb (II) adsorption using porous chitosan bead-supported MnFe2O4 nanoparticles. Int J Min Sci Technol 31(6):1107–1115

    Article  CAS  Google Scholar 

  • Li X, Qin Y, Jia Y, Li Y, Zhao Y, Pan Y, Sun J (2021c) Preparation and application of Fe/biochar (Fe-BC) catalysts in wastewater treatment: a review. Chemosphere 274:129766

    Article  CAS  Google Scholar 

  • Li B, Gong J, Fang J, Zheng Z, Fan W (2021d) Cysteine chemical modification for surface regulation of biochar and its application for polymetallic adsorption from aqueous solutions. Environ Sci Pollut Res 28(1):1061–1071

    Article  CAS  Google Scholar 

  • Lillo-Ródenas MA, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2001) Preparation of activated carbons from Spanish anthracite: II. Activation by NaOH. Carbon 39(5):751–759

    Article  Google Scholar 

  • Liu X, Shen F, Smith RL Jr, Qi X (2019) Black liquor-derived calcium-activated biochar for recovery of phosphate from aqueous solutions. Bioresour Technol 294:122198

    Article  CAS  Google Scholar 

  • Lowell S, Shields JE (1991) Adsorption isotherms. In: Powder surface area and porosity. Springer, Dordrecht, pp 11–13

  • Luo W, Qian L, Liu W, Zhang X, Wang Q, Jiang H, Wu Z (2021) A potential Mg-enriched biochar fertilizer: excellent slow-release performance and release mechanism of nutrients. Sci Total Environ 768:144454

    Article  CAS  Google Scholar 

  • Lv P, Yuan Z, Wu C, Ma L, Chen Y, Tsubaki N (2007) Bio-syngas production from biomass catalytic gasification. Energy Convers Manag 48(4):1132–1139

    Article  CAS  Google Scholar 

  • Lyu H, Gao B, He F, Zimmerman AR, Ding C, Huang H, Tang J (2018) Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms. Environ Pollut 233:54–63

    Article  CAS  Google Scholar 

  • Marcińczyk M, Oleszczuk P (2022) Biochar and engineered biochar as slow-and controlled-release fertilizers. J Clean Prod 339:130685

    Article  Google Scholar 

  • Marella TK, Saxena A, Tiwari A, Datta A, Dixit S (2022) Treating agricultural non-point source pollutants using periphyton biofilms and biomass volarization. J Environ Manag 301:113869

    Article  CAS  Google Scholar 

  • Masrura SU, Dissanayake P, Sun Y, Ok YS, Tsang DC, Khan E (2021) Sustainable use of biochar for resource recovery and pharmaceutical removal from human urine: a critical review. Crit Rev Environ Sci Technol 51(24):3016–3048

    Article  CAS  Google Scholar 

  • Melia PM, Busquets R, Hooda PS, Cundy AB, Sohi SP (2019) Driving forces and barriers in the removal of phosphorus from water using crop residue, wood and sewage sludge derived biochars. Sci Total Environ 675:623–631

    Article  CAS  Google Scholar 

  • Min L, Zhongsheng Z, Zhe L, Haitao W (2020) Removal of nitrogen and phosphorus pollutants from water by FeCl3-impregnated biochar. Ecol Eng 149:105792

    Article  Google Scholar 

  • Mitran T, Kumar P, Bandyopadhyay PK, Basak N (2018) Effects of organic amendments on soil physical attributes and aggregate-associated phosphorus under long-term rice-wheat cropping. Pedosphere 28(5):823–832

    Article  CAS  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour Technol 160:191–202

    Article  CAS  Google Scholar 

  • Müller-Stöver DS, Jakobsen I, Grønlund M, Rolsted MMM, Magid J, Hauggaard-Nielsen H, Goss M (2018) Phosphorus bioavailability in ash from straw and sewage sludge processed by low-temperature biomass gasification. Soil Use Manag 34(1):9–17. https://doi.org/10.1111/sum.12399

    Article  Google Scholar 

  • Myers AL (2002) Thermodynamics of adsorption in porous materials. AIChE J 48(1):145–160

    Article  CAS  Google Scholar 

  • Neves D, Thunman H, Matos A, Tarelho L, Gómez-Barea A (2011) Characterization and prediction of biomass pyrolysis products. Prog Energy Combust Sci 37(5):611–630

    Article  CAS  Google Scholar 

  • Novais SV, Zenero MDO, Tronto J, Conz RF, Cerri CEP (2018) Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption. J Environ Manag 214:36–44

    Article  CAS  Google Scholar 

  • O’Connor D, Peng T, Zhang J, Tsang DC, Alessi DS, Shen Z, Hou D (2018) Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci Total Environ 619:815–826

    Article  Google Scholar 

  • Ohtake H, Tsuneda S (eds) (2019) Phosphorus recovery and recycling. Springer Singapore, Singapore

    Google Scholar 

  • Panwar NL, Pawar A (2020) Influence of activation conditions on the physicochemical properties of activated biochar: a review. Biomass Convers Biorefin 2020:1–23

    Google Scholar 

  • Panwar NL, Pawar A, Salvi BL (2019) Comprehensive review on production and utilization of biochar. SN Appl Sci 1(2):1–19

    Article  CAS  Google Scholar 

  • Peng H, Gao P, Chu G, Pan B, Peng J, Xing B (2017) Enhanced adsorption of Cu (II) and Cd (II) by phosphoric acid-modified biochars. Environ Pollut 229:846–853

    Article  CAS  Google Scholar 

  • Plazinski W, Rudzinski W (2009) Kinetics of adsorption at solid/solution interfaces controlled by intraparticle diffusion: a theoretical analysis. J Phys Chem C 113(28):12495–12501

    Article  CAS  Google Scholar 

  • Qian ZY, Xue SG, Cui MQ, Wu C, Li WC (2021) Arsenic availability and transportation in soil-rice system affected by iron-modified biochar. J Cent South Univ 28(6):1901–1918

    Article  CAS  Google Scholar 

  • Rajapaksha AU, Vithanage M, Ahmad M, Seo DC, Cho JS, Lee SE, Ok YS (2015) Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J Hazard Mater 290:43–50

    Article  CAS  Google Scholar 

  • Rajput VD, Minkina T, Ahmed B, Singh VK, Mandzhieva S, Sushkova S, Wang B (2022) Nano-biochar: a novel solution for sustainable agriculture and environmental remediation. Environ Res 210:112891

    Article  CAS  Google Scholar 

  • Ramadan, M. M., & Abd-Elsalam, K. A. (2020). Micro/Nano biochar for sustainable plant health: present status and future prospects. In: Carbon nanomaterials for agri-food and environmental applications, pp 323–357

  • Rashid M, Hussain Q, Khan KS, Alwabel MI, Hayat R, Akmal M, Alvi S (2021) Carbon-based slow-release fertilizers for efficient nutrient management: synthesis, applications, and future research needs. J Soil Sci Plant Nutr 21(2):1144–1169

    Article  CAS  Google Scholar 

  • Ren J, Li N, Li L, An JK, Zhao L, Ren NQ (2015) Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water. Bioresour Technol 178:119–125

    Article  CAS  Google Scholar 

  • Rhodes CJ (2017) The imperative for regenerative agriculture. Sci Prog 100(1):80–129

    Article  CAS  Google Scholar 

  • Rombel A, Krasucka P, Oleszczuk P (2021) Sustainable biochar-based soil fertilizers and amendments as a new trend in biochar research. Sci Total Environ 816:151588

    Article  Google Scholar 

  • Roy ED (2017) Phosphorus recovery and recycling with ecological engineering: a review. Ecol Eng 98:213–227

    Article  Google Scholar 

  • Sakhiya AK, Baghel P, Anand A, Vijay VK, Kaushal P (2021) A comparative study of physical and chemical activation of rice straw derived biochar to enhance Zn2+ adsorption. Bioresource Technol Rep 15:100774

    Article  CAS  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):73

    Article  Google Scholar 

  • Senthil C, Lee CW (2021) Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices. Renew Sustain Energy Rev 137:110464

    Article  CAS  Google Scholar 

  • Shaddel S, Grini T, Ucar S, Azrague K, Andreassen JP, Østerhus SW (2020) Struvite crystallization by using raw seawater: improving economics and environmental footprint while maintaining phosphorus recovery and product quality. Water Res 173:115572

    Article  CAS  Google Scholar 

  • Shalini SS, Palanivelu K, Ramachandran A, Raghavan V (2021) Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—a review. Biomass Convers Biorefin 11(5):2247–2267

    Article  Google Scholar 

  • Shan D, Deng S, Zhao T, Wang B, Wang Y, Huang J, Wiesner MR (2016) Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J Hazard Mater 305:156–163

    Article  CAS  Google Scholar 

  • Sheng Y, Zhu L (2018) Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci Total Environ 622:1391–1399

    Article  Google Scholar 

  • Shepherd JG, Sohi SP, Heal KV (2016) Optimising the recovery and re-use of phosphorus from wastewater effluent for sustainable fertiliser development. Water Res 94:155–165

    Article  CAS  Google Scholar 

  • Sircar S, Mohr R, Ristic C, Rao MB (1999) Isosteric heat of adsorption: theory and experiment. J Phys Chem B 103(31):6539–6546

    Article  CAS  Google Scholar 

  • Streubel JD, Collins HP, Tarara JM, Cochran RL (2012) Biochar produced from anaerobically digested fiber reduces phosphorus in dairy lagoons. J Environ Qual 41(4):1166–1174

    Article  CAS  Google Scholar 

  • Sun Y, Gao B, Yao Y, Fang J, Zhang M, Zhou Y, Yang L (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578

    Article  CAS  Google Scholar 

  • Sun Y, Zhang JP, Wen C, Zhang L (2016) An enhanced approach for biochar preparation using fluidized bed and its application for H2S removal. Chem Eng Process 104:1–12

    Article  CAS  Google Scholar 

  • Sun D, Hale L, Kar G, Soolanayakanahally R, Adl S (2018) Phosphorus recovery and reuse by pyrolysis: applications for agriculture and environment. Chemosphere 194:682–691

    Article  CAS  Google Scholar 

  • Sun R, Zhang X, Wang C, Cao Y (2021) Co-carbonization of red mud and waste sawdust for functional application as Fenton catalyst: evaluation of catalytic activity and mechanism. J Environ Chem Eng 9(4):105368

    Article  CAS  Google Scholar 

  • Tan XF, Liu YG, Gu YL, Xu Y, Zeng GM, Hu XJ, Li J (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol 212:318–333

    Article  CAS  Google Scholar 

  • Tao Q, Chen Y, Zhao J, Li B, Li Y, Tao S, Wang C (2019) Enhanced Cd removal from aqueous solution by biologically modified biochar derived from digestion residue of corn straw silage. Sci Total Environ 674:213–222

    Article  CAS  Google Scholar 

  • Tao Q, Li B, Chen Y, Zhao J, Li Q, Chen Y, Wang C (2021) An integrated method to produce fermented liquid feed and biologically modified biochar as cadmium adsorbents using corn stalks. Waste Manag 127:112–120

    Article  CAS  Google Scholar 

  • Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environl Sci Biotechnol 19(1):191–215

    Article  CAS  Google Scholar 

  • Tong Y, McNamara PJ, Mayer BK (2019) Adsorption of organic micropollutants onto biochar: a review of relevant kinetics, mechanisms and equilibrium. Environ Sci Water Res Technol 5(5):821–838

    Article  CAS  Google Scholar 

  • Tonini D, Saveyn HG, Huygens D (2019) Environmental and health co-benefits for advanced phosphorus recovery. Nat Sustain 2(11):1051–1061

    Article  Google Scholar 

  • Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481

    Article  CAS  Google Scholar 

  • Tun H, Chen CC (2021) Isosteric heat of adsorption from thermodynamic Langmuir isotherm. Adsorption 27(6):979–989

    Article  CAS  Google Scholar 

  • Vithanage M, Rajapaksha AU, Zhang M, Thiele-Bruhn S, Lee SS, Ok YS (2015) Acid-activated biochar increased sulfamethazine retention in soils. Environ Sci Pollut Res 22(3):2175–2186

    Article  CAS  Google Scholar 

  • Vonopen B, Kordel W, Klein W (1991) Measurement and experience with the applicability of the modified OECD-guide-line. Sorption of nonpolar and polar compounds to soils processes. Chemosphere 22(3–4):285–304

    Article  Google Scholar 

  • Wan S, Wang S, Li Y, Gao B (2017) Functionalizing biochar with Mg–Al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions. J Ind Eng Chem 47:246–253

    Article  CAS  Google Scholar 

  • Wang J, Guo X (2020) Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258:127279

    Article  CAS  Google Scholar 

  • Wang C, Wang H (2018) Pb (II) sorption from aqueous solution by novel biochar loaded with nano-particles. Chemosphere 192:1–4

    Article  CAS  Google Scholar 

  • Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: a review. J Clean Prod 227:1002–1022

    Article  CAS  Google Scholar 

  • Wang Z, Shen D, Shen F, Li T (2016) Phosphate adsorption on lanthanum loaded biochar. Chemosphere 150:1–7

    Article  CAS  Google Scholar 

  • Wang B, Gao B, Fang J (2017) Recent advances in engineered biochar productions and applications. Crit Rev Environ Sci Technol 47(22):2158–2207

    Article  CAS  Google Scholar 

  • Wang C, Wang H, Cao Y (2018a) Pb (II) sorption by biochar derived from Cinnamomum camphora and its improvement with ultrasound-assisted alkali activation. Colloids Surf, A 556:177–184

    Article  CAS  Google Scholar 

  • Wang S, Kong L, Long J, Su M, Diao Z, Chang X, Shih K (2018b) Adsorption of phosphorus by calcium-flour biochar: isotherm, kinetic and transformation studies. Chemosphere 195:666–672

    Article  CAS  Google Scholar 

  • Wang H, Xu J, Sheng L (2020a) Preparation of straw biochar and application of constructed wetland in China: a review. J Clean Prod 273:123131

    Article  CAS  Google Scholar 

  • Wang H, Xiao K, Yang J, Yu Z, Yu W, Xu Q, Liu B (2020b) Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron-rich sludge: a potential phosphorus fertilizer. Water Res 174:115629

    Article  CAS  Google Scholar 

  • Wang C, Huang R, Sun R (2020c) Green one-spot synthesis of hydrochar supported zero-valent iron for heterogeneous Fenton-like discoloration of dyes at neutral pH. J Mol Liq 320:114421

    Article  CAS  Google Scholar 

  • Wang C, Zhang X, Sun R, Cao Y (2020d) Neutralization of red mud using bio-acid generated by hydrothermal carbonization of waste biomass for potential soil application. J Clean Prod 271:122525

    Article  CAS  Google Scholar 

  • Wang C, Huang R, Sun R, Yang J, Sillanpää M (2021a) A review on persulfates activation by functional biochar for organic contaminants removal: synthesis, characterizations, radical determination, and mechanism. J Environ Chem Eng 9(5):106267

    Article  CAS  Google Scholar 

  • Wang C, Sun R, Huang R (2021b) Highly dispersed iron-doped biochar derived from sawdust for Fenton-like degradation of toxic dyes. J Clean Prod 297:126681

    Article  CAS  Google Scholar 

  • Wang B, Ma Y, Lee X, Wu P, Liu F, Zhang X, Chen M (2021c) Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer. Sci Total Environ 758:143664

    Article  CAS  Google Scholar 

  • Wang W, Chen X, Yang B (2021d) Calculation of adsorption thermodynamics parameters for adsorption on the solid-liquid interface. Univ Chem 36(2):2003032

    Google Scholar 

  • Wang C, Sun R, Huang R, Wang H (2021e) Superior fenton-like degradation of tetracycline by iron loaded graphitic carbon derived from microplastics: synthesis, catalytic performance, and mechanism. Sep Purif Technol 270:118773

    Article  CAS  Google Scholar 

  • Wang C, Luo D, Zhang X, Huang R, Cao Y, Liu G, Wang H (2022a) Biochar-based slow-release of fertilizers for sustainable agriculture: a mini review. Environ Sci Ecotechnol 10:100167

    Article  CAS  Google Scholar 

  • Wang Y, Peng Z, Yang Y, Li Z, Wen Y, Liu M, Zhou N (2022b) Auricularia auricula biochar supported γ-FeOOH nanoarrays for electrostatic self-assembly and pH-responsive controlled release of herbicide and fertilizer. Chem Eng J 437:134984

    Article  CAS  Google Scholar 

  • Wang, C. (2021). Production of biochar from renewable resources. In: Advanced technology for the conversion of waste into fuels and chemicals. Woodhead Publishing, pp 273–287

  • Wen P, Wu Z, Han Y, Cravotto G, Wang J, Ye BC (2017) Microwave-assisted synthesis of a novel biochar-based slow-release nitrogen fertilizer with enhanced water-retention capacity. ACS Sustain Chem Eng 5(8):7374–7382

    Article  CAS  Google Scholar 

  • Wongrod S, Simon S, Guibaud G, Lens PN, Pechaud Y, Huguenot D, van Hullebusch ED (2018) Lead sorption by biochar produced from digestates: consequences of chemical modification and washing. J Environ Manag 219:277–284

    Article  CAS  Google Scholar 

  • Wu F, Wang J, Liu J, Zeng G, Xiang P, Hu P, Xiang W (2021) Distribution, geology and development status of phosphate resources. Geol China 48(1):82–101 (in Chinese)

    Google Scholar 

  • Xi J, Li H, Xi J, Tan S, Zheng J, Tan Z (2020) Preparation of high porosity biochar materials by template method: a review. Environ Sci Pollut Res 27(17):20675–20684

    Article  CAS  Google Scholar 

  • Xiang W, Zhang X, Chen J, Zou W, He F, Hu X, Gao B (2020) Biochar technology in wastewater treatment: a critical review. Chemosphere 252:126539

    Article  CAS  Google Scholar 

  • Xiao L, Jiang H, Shen C, Li K (2019) Adsorption of phosphorus onto Fe-modified Thalia dealbata derived biochar. In: E3S Web of conferences, vol 118. EDP Sciences, p 01022

  • Xing Y, Luo X, Liu S, Wan W, Huang Q, Chen W (2021) A novel eco-friendly recycling of food waste for preparing biofilm-attached biochar to remove Cd and Pb in wastewater. J Clean Prod 311:127514

    Article  CAS  Google Scholar 

  • Xu Q, Chen Z, Wu Z, Xu F, Yang D, He Q, Chen Y (2019) Novel lanthanum doped biochars derived from lignocellulosic wastes for efficient phosphate removal and regeneration. Bioresour Technol 289:121600

    Article  CAS  Google Scholar 

  • Xu Z, He M, Xu X, Cao X, Tsang DC (2021) Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresour Technol 338:125555

    Article  CAS  Google Scholar 

  • Yang Q, Wang X, Luo W, Sun J, Xu Q, Chen F, Zeng G (2018) Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresour Technol 247:537–544

    Article  CAS  Google Scholar 

  • Yang H, Ye S, Zeng Z, Zeng G, Tan X, Xiao R, Xu F (2020) Utilization of biochar for resource recovery from water: a review. Chem Eng J 397:125502

    Article  CAS  Google Scholar 

  • Yang F, Sui L, Tang C, Li J, Cheng K, Xue Q (2021) Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances. Sci Total Environ 768:145106

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011a) Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J Hazard Mater 190(1–3):501–507

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011b) Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol 102(10):6273–6278

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Chen J, Yang L (2013a) Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol 47(15):8700–8708

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Chen J, Zhang M, Inyang M, Li Y, Yang L (2013b) Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresour Technol 138:8–13

    Article  CAS  Google Scholar 

  • You S, Ok YS, Chen SS, Tsang DC, Kwon EE, Lee J, Wang CH (2017) A critical review on sustainable biochar system through gasification: energy and environmental applications. Bioresour Technol 246:242–253

    Article  CAS  Google Scholar 

  • Yu F, Deng S, Chen P, Liu Y, Wan Y, Olson A, Ruan R (2007) Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover. In: Mielenz JR, Klasson KT, Adney WS, McMillan JD (eds) Applied biochemistry and Biotecnology. Humana Press, Totowa, pp 957–970

    Chapter  Google Scholar 

  • Yu YL, Yang LZ, Li HN, Zhu CX, Yang B, Xue LH (2020) Situation analysis and trend prediction of the prevention and control technologies for planting non-point source pollution. Environ Sci 41(8):3870–3878 (in Chinese)

    Google Scholar 

  • Yuan J, Wen Y, Ruiz G, Sun W, Ma X (2020) Enhanced phosphorus removal and recovery by metallic nanoparticles-modified biochar. Nanotechnol Environ Eng 5(3):1–13

    Article  Google Scholar 

  • Zhang T, Walawender WP, Fan LT, Fan M, Daugaard D, Brown RC (2004) Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem Eng J 105(1–2):53–59

    Article  CAS  Google Scholar 

  • Zhang T, Xu H, Li H, He X, Shi Y, Kruse A (2018) Microwave digestion-assisted HFO/biochar adsorption to recover phosphorus from swine manure. Sci Total Environ 621:1512–1526

    Article  CAS  Google Scholar 

  • Zhao L, Cao X, Zheng W, Scott JW, Sharma BK, Chen X (2016) Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. Acs Sustain Chem Eng 4(3):1630–1636

    Article  CAS  Google Scholar 

  • Zhao D, Luo Y, Feng YY, He QP, Zhang LS, Zhang KQ, Wang F (2021) Enhanced adsorption of phosphorus in soil by lanthanum-modified biochar: improving phosphorus retention and storage capacity. Environ Sci Pollut Res 28(48):68982–68995

    Article  CAS  Google Scholar 

  • Zheng Y, Wang B, Wester AE, Chen J, He F, Chen H, Gao B (2019) Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar. Chem Eng J 362:460–468

    Article  CAS  Google Scholar 

  • Zheng Z, Zhao B, Guo Y, Guo Y, Pak T, Li G (2021) Preparation of mesoporous batatas biochar via soft-template method for high efficiency removal of tetracycline. Sci Total Environ 787:147397

    Article  CAS  Google Scholar 

  • Zhu N, Yan T, Qiao J, Cao H (2016) Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: adsorption mechanism and depleted adsorbent utilization. Chemosphere 164:32–40

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Project (2020YFC1908802).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by DL, LW, and CW. The first draft of the manuscript was written by DL and CW and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Chongqing Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors read the manuscript and approved for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 285 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D., Wang, L., Nan, H. et al. Phosphorus adsorption by functionalized biochar: a review. Environ Chem Lett 21, 497–524 (2023). https://doi.org/10.1007/s10311-022-01519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-022-01519-5

Keywords

Navigation