Skip to main content
Log in

Comparison of CYP106A1 and CYP106A2 from Bacillus megaterium – identification of a novel 11-oxidase activity

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The CYP106A subfamily hydroxylates steroids, diterpenes, and triterpenes in a regioselective and stereoselective manner, which is a challenging task for synthetic chemistry. The well-studied CYP106A2 enzyme, from the Bacillus megaterium strain ATCC 13368, is a highly promising candidate for the pharmaceutical industry. It shares 63 % amino acid sequence identity with CYP106A1 from B. megaterium DSM319, which was recently characterized. A focused steroid library was screened with both CYP106A1 and CYP106A2. Out of the 23 tested steroids, 19 were successfully converted by both enzymes during in vitro and in vivo reactions. Thirteen new substrates were identified for CYP106A1, while the substrate spectrum of CYP106A2 was extended by seven new members. Finally, six chosen steroids were further studied on a preparative scale employing a recombinant B. megaterium MS941 whole-cell system, yielding sufficient amounts of product for structure characterization by nuclear magnetic resonance. The hydroxylase activity was confirmed at positons 6β, 7β, 9α, and 15β. In addition, the CYP106A subfamily showed unprecedented 11-oxidase activity, converting 11β-hydroxysteroids to their 11-keto derivatives. This novel reaction and the diverse hydroxylation positions on pharmaceutically relevant compounds underline the role of the CYP106A subfamily in drug development and production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agematu H, Matsumoto N, Fujii Y, Kabumoto H, Doi S, Machida K, Ishikawa J, Arisawa A (2006) Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia coli expression system. Biosci Biotechnol Biochem 70(1):307–311

    Article  CAS  PubMed  Google Scholar 

  • Barg H, Malten M, Jahn M, Jahn D (2005) Protein and vitamin production in Bacilllus megaterium Microbial processes and products, vol 18, 1st edn. Humana, Totowa, pp 205–223

    Chapter  Google Scholar 

  • Bellucci G, Chiappe C, Pucci L, Gervasi PG (1996) The mechanism of oxidation of allylic alcohols to α, β-unsaturated ketones by cytochrome P450†. Chem Res Toxicol 9(5):871–874

    Article  CAS  PubMed  Google Scholar 

  • Berg A, Rafter JJ (1981) Studies on the substrate specificity and inducibility of cytochrome P-450meg. Biochem J 196(3):781–786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berg A, Gustafsson J, Ingelman-Sundberg M (1976) Characterization of a cytochrome P-450-dependent steroid hydroxylase system present in Bacillus megaterium. J Biol Chem 251:2831–2838

    CAS  PubMed  Google Scholar 

  • Berg A, Ingelman-Sundberg M, Gustafsson J (1979) Isolation and characterization of cytochrome P-450meg. Acta Biol Med Ger 38:333–344

    CAS  PubMed  Google Scholar 

  • Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124(1):128–145

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt R, Urlacher V (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 98(14):6185–6203

    Article  CAS  PubMed  Google Scholar 

  • Bleif S, Hannemann F, Lisurek M, Kries J, Zapp J, Dietzen M, Antes I, Bernhardt R (2011) Identification of CYP106A2 as a regioselective allylic bacterial diterpene hydroxylase. Chem Biol Chem 12:576–582

    Article  CAS  Google Scholar 

  • Bleif S, Hannemann F, Zapp J, Hartmann D, Jauch J, Bernhardt R (2012) A new Bacillus megaterium whole-cell catalyst for the hydroxylation of the pentacyclic triterpene 11-keto-beta-boswellic acid (KBA) based on a recombinant cytochrome P450 system. Appl Microbiol Biotechnol 93:1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Bracco P, Janssen D, Schallmey A (2013) Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450. Microb Cell Fact 12(1):95

    Article  PubMed Central  PubMed  Google Scholar 

  • Brill E (2013) Identifizierung und Charakterisierung neuer Cytochrom P450 Systeme aus Bacillus megaterium DSM319 Universität des Saarlandes

  • Brill E, Hannemann F, Zapp J, Bruning G, Jauch J, Bernhardt R (2014) A new cytochrome P450 system from Bacillus megaterium DSM319 for the hydroxylation of 11-keto-beta-boswellic acid (KBA). Appl Microbiol Biotechnol 98:1701–1717

    PubMed  Google Scholar 

  • Carballeira JD, Quezada MA, Hoyos P, Simeó Y, Hernaiz MJ, Alcantara AR, Sinisterra JV (2009) Microbial cells as catalysts for stereoselective red–ox reactions. Biotechnol Adv 27(6):686–714

    Article  CAS  PubMed  Google Scholar 

  • Chefson A, Auclair K (2006) Progress towards the easier use of P450 enzymes. Mol Biosyst 2(10):462–469

    Article  CAS  PubMed  Google Scholar 

  • Choudhary MI, Sultan S, Khan MTH, Rahman A-u (2005) Microbial transformation of 17α-ethynyl- and 17α-ethylsteroids, and tyrosinase inhibitory activity of transformed products. Steroids 70(12):798–802

    Article  CAS  PubMed  Google Scholar 

  • Choudhary MI, Erum S, Atif M, Malik R, Khan NT, Attaur R (2011) Biotransformation of (20S)-20-hydroxymethylpregna-1,4-dien-3-one by four filamentous fungi. Steroids 76(12):1288–1296

    CAS  PubMed  Google Scholar 

  • Donova M, Egorova O (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447

    Article  CAS  PubMed  Google Scholar 

  • Ewen K, Ringle M, Bernhardt R (2012) Adrenodoxin—a versatile ferredoxin. IUBMB Life 64:506–512

    Article  CAS  PubMed  Google Scholar 

  • Faramarzi MA, Tabatabaei Yazdi M, Amini M, Zarrini G, Shafiee A (2003) Microbial hydroxylation of progesterone with Acremonium strictum. FEMS Microbiol Lett 222(2):183–186

    Article  CAS  PubMed  Google Scholar 

  • Ferrero VEV, Di Nardo G, Catucci G, Sadeghi SJ, Gilardi G (2012) Fluorescence detection of ligand binding to labeled cytochrome P450 BM3. Dalton Trans 41(7):2018–2025

    Article  CAS  PubMed  Google Scholar 

  • Girhard M, Klaus T, Khatri Y, Bernhardt R, Urlacher V (2010) Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis. Appl Microbiol Biotechnol 87(2):595–607

    Article  CAS  PubMed  Google Scholar 

  • Gotoh O (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267(1):83–90

    CAS  PubMed  Google Scholar 

  • Hannemann F, Virus C, Bernhardt R (2006) Design of an Escherichia coli system for whole cell mediated steroid synthesis and molecular evolution of steroid hydroxylases. J Biotechnol 124(1):172–181

    Article  CAS  PubMed  Google Scholar 

  • Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta 1770(3):330–344

    Article  CAS  PubMed  Google Scholar 

  • He J, Ruettinger R, Liu H, Fulco A (1989) Molecular cloning, coding nucleotides and the deduced amino acid sequence of P-450BM-1 from Bacillus megaterium. Biochim Biophys Acta 1009(3):301–303

    Article  CAS  PubMed  Google Scholar 

  • He J, Liang Q, Fulco A (1995) The molecular cloning and characterization of BM1P1 and BM1P2 proteins, putative positive transcription factors involved in barbiturate-mediated induction of the genes encoding cytochrome P450BM-1 of Bacillus megaterium. J Biol Chem 270:18615–18625

    Article  CAS  PubMed  Google Scholar 

  • Hollmann F, Hofstetter K, Schmid A (2006) Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis. Trends Biotechnol 24(4):163–171

    Article  CAS  PubMed  Google Scholar 

  • Janeczko T, Dmochowska-Gładysz J, Kostrzewa-Susłow E, Białońska A, Ciunik Z (2009) Biotransformations of steroid compounds by Chaetomium sp. KCH 6651. Steroids 74(8):657–661

    Article  CAS  PubMed  Google Scholar 

  • Janocha S (2013) Umsatz von Harzsäuren durch die bakteriellen Cytochrome CYP105A1 und CYP106A2 – Strukturelle Grundlagen und potentielle Anwendungen. Saarländische Universitäts- und Landesbibliothek, Saarbrücken

  • Janocha S, Bernhardt R (2013) Design and characterization of an efficient CYP105A1-based whole-cell biocatalyst for the conversion of resin acid diterpenoids in permeabilized Escherichia coli. Appl Microbiol Biotechnol 97:7639–7649

    Article  CAS  PubMed  Google Scholar 

  • Khatri Y, Hannemann F, Girhard M, Kappl R, Même A, Ringle M, Janocha S, Leize-Wagner E, Urlacher V, Bernhardt R (2013) Novel family members of CYP109 from Sorangium cellulosum So ce56 exhibit characteristic biochemical and biophysical properties. Biotechnol Appl Biochem 60(1):18–29

    Article  CAS  PubMed  Google Scholar 

  • Kirk DN, Toms HC, Douglas C, White KA, Smith KE, Latif S, Hubbard RWP (1990) A survey of the high-field 1H NMR spectra of the steroid hormones, their hydroxylated derivatives, and related compounds. J Chem Soc Perkin Trans 2(9):1567–1594

    Article  Google Scholar 

  • Korneli C, David F, Biedendieck R, Jahn D, Wittmann C (2013) Getting the big beast to work—systems biotechnology of Bacillus megaterium for novel high-value proteins. J Biotechnol 163(2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Lee G-Y, Kim D-H, Kim D, Ahn T, Yun C-H (2014) Functional characterization of steroid hydroxylase CYP106A1 derived from Bacillus megaterium. Arch Pharm Res 1–10

  • Li Y, Drummond DA, Sawayama AM, Snow CD, Bloom JD, Arnold FH (2007) A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments. Nat Biotechnol 25(9):1051–1056

    Article  CAS  PubMed  Google Scholar 

  • Lisurek M, Kang M, Hartmann R, Bernhardt R (2004) Identification of monohydroxy progesterones produced by CYP106A2 using comparative HPLC and electrospray ionisation collision-induced dissociation mass spectrometry. Biochem Biophys Res Commun 319:677–682

    Article  CAS  PubMed  Google Scholar 

  • Lisurek M, Simgen B, Antes I, Bernhardt R (2008) Theoretical and experimental evaluation of a CYP106A2 low homology model and production of mutants with changed activity and selectivity of hydroxylation. Chem Biol Chem 9:1439–1449

    Article  CAS  Google Scholar 

  • Makino T, Katsuyama Y, Otomatsu T, Misawa N, Ohnishi Y (2014) regio- and stereospecific hydroxylation of various steroids at the 16α position of the d ring by the Streptomyces griseus cytochrome P450 CYP154C3. Appl Environ Microbiol 80(4):1371–1379

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsunaga T, Tanaka H, Higuchi S, Shibayama K, Kishi N, Watanabe K, Yamamoto I (2001) Oxidation mechanism of 7-hydroxy-δ8-tetrahydrocannabinol and 8-hydroxy-δ9-tetrahydrocannabinol to the corresponding ketones by CYP3A11. Drug Metab Dispos 29(11):1485–1491

    CAS  PubMed  Google Scholar 

  • Matsuzaki K, Arai T, Miyazaki T, Yasuda K (1995) Formation of 6β-OH-deoxycorticosterone from deoxycorticosterone by A6 cells. Steroids 60(7):457–462

    Article  CAS  PubMed  Google Scholar 

  • Mineki S, Iida M, Kato K, Fukaya F, Kita K, Nakamura J, Yoshihama M (1995) Microbial production of hydroxy-C19-steroids as estrogen synthetase (P-450 aromatase) inhibitors. J Ferment Bioeng 80(3):223–228

    Article  CAS  Google Scholar 

  • Nguyen K, Virus C, Gunnewich N, Hannemann F, Bernhardt R (2012) Changing the regioselectivity of a P450 from C15 to C11 hydroxylation of progesterone. Chem Biol Chem 13:1161–1166

    Article  CAS  Google Scholar 

  • O’Reilly E, Kohler V, Flitsch SL, Turner NJ (2011) Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun 47(9):2490–2501

    Article  Google Scholar 

  • Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes: I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    CAS  PubMed  Google Scholar 

  • Pochapsky T, Kazanis S, Dang M (2010) Conformational plasticity and structure/function relationships in cytochromes P450. Antioxid Redox Signal 13(8):1273–1296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sagara Y, Wada A, Takata Y, Waterman M, Sekimizu K, Horiuchi T (1993) Direct expression of adrenodoxin reductase in Escherichia coli and the functional characterization. Biol Pharm Bull 16:627–630

    Article  CAS  PubMed  Google Scholar 

  • Schenkman J, Jansson I (1998) Spectral analyses of cytochromes P450. Methods Mol Biol (Clifton, NJ) 107:25

    CAS  Google Scholar 

  • Schenkman J, Sligar S, Cinti D (1981) Substrate interaction with cytochrome P-450. Pharmacol Ther 12:43–71

    Article  CAS  PubMed  Google Scholar 

  • Schmitz D, Zapp J, Bernhardt R (2012) Hydroxylation of the triterpenoid dipterocarpol with CYP106A2 from Bacillus megaterium. FEBS J 279:1663–1674

    Article  CAS  PubMed  Google Scholar 

  • Schmitz D, Zapp J, Bernhardt R (2014) Steroid conversion with CYP106A2 — production of pharmaceutically interesting DHEA metabolites. Microb Cell Fact 13:81

    Article  PubMed Central  PubMed  Google Scholar 

  • Seng Wong T, Arnold FH, Schwaneberg U (2004) Laboratory evolution of cytochrome P450 BM-3 monooxygenase for organic cosolvents. Biotechnol Bioeng 85(3):351–358

    Article  Google Scholar 

  • Simgen B, Contzen J, Schwarzer R, Bernhardt R, Jung C (2000) Substrate binding to 15beta-hydroxylase (CYP106A2) probed by FT infrared spectroscopic studies of the iron ligand CO stretch vibration. Biochem Biophys Res Commun 269:737–742

    Article  CAS  PubMed  Google Scholar 

  • Suhara K, Takeda K, Katagiri M (1986) P-45011β-dependent conversion of cortisol to cortisone, and 19-hydroxyandrostenedione to 19-oxoandrostenedione. Biochem Biophys Res Commun 136(1):369–375

    Article  CAS  PubMed  Google Scholar 

  • Tong W, Dong X (2009) Microbial biotransformation: recent developments on steroid drugs. Recent Pat Biotechnol 3(2):141–153

    Article  CAS  PubMed  Google Scholar 

  • Uhlmann H, Beckert V, Schwarz D, Bernhardt R (1992) Expression of bovine adrenodoxin in E. coli and site-directed mutagenesis of/2 Fe-2S/cluster ligands. Biochem Biophys Res Commun 188:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24:324–330

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30:26–36

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Lutz-Wahl S, Schmid RD (2004) Microbial P450 enzymes in biotechnology. Appl Microbiol Biotechnol 64:317–325

    Article  CAS  PubMed  Google Scholar 

  • Vary P, Biedendieck R, Fuerch T, Meinhardt F, Rohde M, Deckwer W-D, Jahn D (2007) Bacillus megaterium—from simple soil bacterium to industrial protein production host. Appl Microbiol Biotechnol 76:957–967

    Article  CAS  PubMed  Google Scholar 

  • Venkataraman H, te Poele E, Rosłoniec K, Vermeulen N, Commandeur JM, van der Geize R, Dijkhuizen L (2014) Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme. Appl Microbiol Biotechnol 1–9

  • Virus C, Bernhardt R (2008) Molecular evolution of a steroid hydroxylating cytochrome P450 using a versatile steroid detection system for screening. Lipids 43:1133–1141

    Article  CAS  PubMed  Google Scholar 

  • Virus C, Lisurek M, Simgen B, Hannemann F, Bernhardt R (2006) Function and engineering of the 15beta-hydroxylase CYP106A2. Biochem Soc Trans 34:1215–1218

    Article  CAS  PubMed  Google Scholar 

  • Wittchen K, Meinhardt F (1995) Inactivation of the major extracellular protease from Bacillus megaterium DSM319 by gene replacement. Appl Microbiol Biotechnol 42:871–877

    Article  CAS  PubMed  Google Scholar 

  • Zehentgruber D, Hannemann F, Bleif S, Bernhardt R, Lütz S (2010) Towards preparative scale steroid hydroxylation with cytochrome P450 monooxygenase CYP106A2. Chem Biol Chem 11:713–721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was generously supported by the People Programme (Marie Curie Actions) of the European Union’s 7th Framework Programme (FP7/2007–2013), P4FIFTY–FP7 PEOPLE ITN 2011-289217. The authors thank Wolfgang Reinle and Birgit Heider-Lips for the excellent expression and purification of AdR and Adx4-108 and Nicolas Souza Carmona for the thorough revision of the language.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Bernhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiss, F.M., Schmitz, D., Zapp, J. et al. Comparison of CYP106A1 and CYP106A2 from Bacillus megaterium – identification of a novel 11-oxidase activity. Appl Microbiol Biotechnol 99, 8495–8514 (2015). https://doi.org/10.1007/s00253-015-6563-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6563-8

Keywords

Navigation