Skip to main content
Log in

Genome-wide investigation of the genes involved in nicotine metabolism in Pseudomonas putida J5 by Tn5 transposon mutagenesis

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas putida J5 is an efficient nicotine-degrading bacterial strain isolated from the tobacco rhizosphere. We successfully performed a comprehensive whole-genome analysis of nicotine metabolism-associated genes by Tn5 transposon mutagenesis in P. putida J5. A total of 18 mutants with unique insertions screened from 16,324 Tn5-transformants failed to use nicotine as the sole carbon source. Flanking sequences of the Tn5 transposon were cloned with a shotgun method from all of the nicotine-growth-deficient mutants. The potentially essential products of mutated gene were classified as follows: oxidoreductases, protein and metal transport systems, proteases and peptidases, transcriptional and translational regulators, and unknown proteins. Bioinformatic analysis of the Tn5 insertion sites indicated that the nicotine metabolic genes were separated and widely distributed in the genome. One of the mutants, M2022, was a Tn5 insert into a gene encoding a homolog of 6-hydroxy-l-nicotine oxidase, the second enzyme of nicotine metabolism in Arthrobacter nicotinovorans. Genetic and biochemical analysis confirmed that three open reading frames (ORFs) from an approximately 13-kb fragment recovered from the mutant M2022 were responsible for the transformation of nicotine to 3-succinoyl-pyridine via pseudooxynicotine and 3-succinoyl semialdehyde-pyridine, the first three steps of nicotine degradation. Further research on these mutants and the Tn5-inserted genes will help us characterize nicotine metabolic processes in P. putida J5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Armstrong DW, Wang X, Ercal N (1998) Enantiomeric composition of nicotine in smokeless tobacco, medicinal products, and commercial reagents. Chiriality 10:587–591

    Article  CAS  Google Scholar 

  • Aubert D, Naas T, Héritier C, Poirel L, Nordmann P (2006) Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of β-lactam resistance genes. J Bacteriol 188:6506–6514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baitsch D, Sandu C, Brandsch R, Igloi GL (2001) Gene cluster on pAO1 of Arthrobacter nicotinovorans involved in degradation of the plant alkaloid nicotine: cloning, purification, and characterization of 2, 6-dihydroxypyridine 3-hydroxylase. J Bacteriol 183:5262–5267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berg DE, Berg CM (1983) The prokaryotic transposable element Tn5. Nat Biotechnol 1:417–435

    Article  Google Scholar 

  • Brandsch R (2006) Microbiology and biochemistry of nicotine degradation. Appl Microbiol Biotechnol 69:493–498

    Article  CAS  PubMed  Google Scholar 

  • Cánovas D, Cases I, de Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256

    Article  PubMed  Google Scholar 

  • Chandler M, Mahillon J (2002) Insertion sequences revisited. In: Craig NL, Craigie R, Geller M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington D.C., pp 305–366

    Google Scholar 

  • Chiribau CB, Mihasan M, Ganas P, Igloi GL, Artenie V, Brandsch R (2006) Final steps in the catabolism of nicotine. FEBS J 273:1528–1536

    Article  CAS  PubMed  Google Scholar 

  • Civilini M, Domenis C, Sebastianutto N, de Bertoldi M (1997) Nicotine decontamination of tobacco agro-industrial waste and its degradation by micro-organisms. Waste Manag Res 15:349–358

    Article  CAS  Google Scholar 

  • dePalmenaer D, Siguier P, Mahillon J (2008) IS4 family goes genomic. BMC Evol Biol 8:18

    Article  Google Scholar 

  • Ganas P, Sachelaru P, Mihasan M, Igloi GL, Brandsch R (2008) Two closely related pathways of nicotine catabolism in Arthrobacter nicotinovorans and Nocardioides sp. strain JS614. Arch Microbiol 189:511–517

    Article  CAS  PubMed  Google Scholar 

  • Ganas P, Igloi GL, Brandsch R (2009) The megaplasmid pAO1 of Arthrobacter nicotinovorans and nicotine catabolism. In: Steinbüchel A, Schwartz E (eds) Microbial megaplasmids. Springer Berlin Heidelberg, Germany, pp 271–282

    Chapter  Google Scholar 

  • Gherna RL, Richardson SH, Rittenberg SC (1965) The bacterial oxidation of nicotine. VI. The metabolism of 2,6-dihydroxypseudooxynicotine. J Biol Chem 240:3669–3674

    CAS  PubMed  Google Scholar 

  • Gladyshev VN, Khangulov SV, Stadtman TC (1994) Nicotinic acid hydroxylase from Clostridium barkeri: electron paramagnetic resonance studies show that selenium is coordinated with molybdenum in the catalytically active selenium-dependent enzyme. Proc Natl Acad Sci U S A 91:232–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heeb S, Blumer C, Haas D (2002) Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184:1046–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurh B, Yamane T, Nagasawa T (1994) Purification and characterization of nicotinic acid dehydrogenase from Pseudomonas fluorescens. J Ferment Bioeng 78:19–26

    Article  CAS  Google Scholar 

  • Igloi GL, Brandsch R (2003) Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system. J Bacteriol 185:1976–1989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kachalova GS, Bourenkov GP, Mengesdorf T, Schenk S, Maun HR, Burghammer M, Riekel C, Decker K, Bartunik HD (2010) Crystal structure analysis of free and substrate-bound 6-hydroxy-l-nicotine oxidase from Arthrobacter nicotinovorans. J Mol Biol 396:785–799

    Article  CAS  PubMed  Google Scholar 

  • Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197

    Article  CAS  PubMed  Google Scholar 

  • Laia ML, Moreira LM, Dezajacomo J, Briati JB, Ferreria CB, Ferro M, Silva A, Ferro J, Oliveira J (2009) New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaption revealed by a transposon-based mutant library. BMC Microbiol 9:9–12

    Article  Google Scholar 

  • Li H, Xie K, Huang H, Wang S (2014) 6-Hydroxy-3-succinoylpyridine hydroxylase catalyzes a central step of nicotine degradation in Agrobacterium tumefaciens S33. PLoS ONE 9(7):e103324

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Wang L, Huang K, Wang W, Nie X, Jiang Y, Li P, Liu S, Xu P, Tang H (2014) Physiological and biochemical characterization of a novel nicotine-degrading bacterium Pseudomonas geniculata N1. PLoS ONE 9:e84399

    Article  PubMed Central  PubMed  Google Scholar 

  • Mihasan M, Chiribau CB, Friedrich T, Artenie V, Brandsch R (2007) An NAD (P) H-nicotine blue oxidoreductase is part of the nicotine regulon and may protect Arthrobacter nicotinovorans from oxidative stress during nicotine catabolism. Appl Environ Microbiol 73(8):2479–2485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagel M, Andreesen JR (1990) Purification and characterization of the molybdoenzymes nicotinate dehydrogenase and 6-hydroxynicotinate dehydrogenase from Bacillus niacini. Arch Microbiol 154:605–613

    Article  CAS  Google Scholar 

  • Novotny TE, Zhao F (1999) Consumption and production waste: another externality of tobacco use. Tob Control 8:75–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu J, Ma Y, Wen Y, Chen L, Wu L, Liu W (2010) Functional identification of two novel genes from Pseudomonas sp. strain HZN6 involved in the catabolism of nicotine. Appl Environ Microbiol 78:2154–2160

    Article  Google Scholar 

  • Qiu J, Ma Y, Zhang J, Wen Y, Liu W (2013) Cloning of a novel nicotine oxidase gene from Pseudomonas sp. strain HZN6 whose product nonenantioselectively degrades nicotine to pseudooxynicotine. Appl Environ Microbiol 79:2164–2171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu J, Wei Y, Ma Y, Wen R, Wen Y, Liu W (2014) A novel (S)-6-hydroxynicotine oxidase gene from Shinella sp. strain HZN7. Appl Environ Microbiol 80(18):5552–5560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reznikoff WS, Winterberg KM (2008) Transposon-based strategies for the identification of essential bacterial genes. Methods Mol Biol 416:13–26

    Article  CAS  PubMed  Google Scholar 

  • Sachelaru P, Schiltz E, Igloi GL, Brandsch R (2005) An α/β-fold C-C bond hydrolase is involved in a central step of nicotine catabolism by Arthrobacter nicotinovorans. J Bacteriol 187:8516–8519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sachelaru P, Schiltz E, Brandsch R (2006) A functional mobA gene for molybdopterin cytosine dinucleotide cofactor biosynthesis is required for activity and holoenzyme assembly of the heterotrimeric nicotine dehydrogenases of Arthrobacter nicotinovorans. Appl Environ Microbiol 72:5126–5131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Schenk S, Hoelz A, Krauss B, Decker K (1998) Gene structures and properties of enzymes of the plasmid-encoded nicotine catabolism of Arthrobacter nicotinovorans. J Mol Biol 284:1323–1339

    Article  CAS  PubMed  Google Scholar 

  • Sloan FA, Gelband H (2007) Cancer control opportunities in low- and middle-income countries. Institute of Medicine (U.S.), Committee on Cancer Control in Low- and Middle-Income Countries, National Academies Press, Washington DC

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Wang L, Meng X, Ma L, Wang S, He X, Wu G, Xu P (2009) Novel nicotine oxidoreductase-encoding gene involved in nicotine degradation by Pseudomonas putida strain S16. Appl Environ Microbiol 75:772–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang H, Yao Y, Wang L, Yu H, Ren Y, Wu G, Xu P (2012) Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation. Sci Rep 2:377

    PubMed Central  PubMed  Google Scholar 

  • Tang H, Wang L, Wang W, Yu H, Zhang K, Yao Y, Xu P (2013) Systematic unraveling of the unsolved pathway of nicotine degradation in Pseudomonas. PLoS Genet 9:e1003923

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomas WJ, Thireault CA, Kimbrel JA, Chang JH (2009) Recombineering and stable integration of the Pseudomonas syringae pv. syringae 61 hrp/hrc cluster into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1. Plant J 60:919–928

    Article  CAS  PubMed  Google Scholar 

  • Wada E, Yamasaki K (1953) Mechanism of microbial degradation of nicotine. Science 117:152–153

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Huang H, Xie K, Xu P (2012) Identification of nicotine biotransformation intermediates by Agrobacterium tumefaciens strain S33 suggests a novel nicotine degradation pathway. Appl Microbiol Biotechnol 95(6):1567–1578

    Article  CAS  PubMed  Google Scholar 

  • Wei HL, Zhang LQ (2006) Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Anton Leeuw Int J G 89:267–280

    Article  Google Scholar 

  • Wei HL, Lei LP, Xia ZY, Liu XZ (2008) Characterization of a novel aerobic nicotine-biodegrading strain of Pseudomonas putida. Ann Microbiol 58:41–45

    Article  CAS  Google Scholar 

  • Wei HL, Lei L, Liu S, Xia Z, Liu X, Liu P (2009) PanB is involved in nicotine metabolism in Pseudomonas putida. Int Biodeterior Biodegrad 63:988–992

    Article  CAS  Google Scholar 

  • Yao Y, Tang H, Ren H, Yu H, Wang L, Zhang W, Behrman EJ, Xu P (2013) Iron (II)-dependent dioxygenase and N-formylamide deformylase catalyze the reactions from 5-hydroxy-2-pyridone to maleamate. Sci Rep 3:3235

    PubMed Central  PubMed  Google Scholar 

  • Yu H, Tang H, Wang L, Yao Y, Wu G, Xu P (2011) Complete genome sequence of the nicotine-degrading Pseudomonas putida strain S16. J Bacteriol 193:5541–5542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu H, Li Y, Tang H, Xu P (2014) Genome sequence of a newly isolated nicotine-degrading bacterium, Ochrobactrum sp. SJY1. Genome Announc 2(4):e00720-14

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the International Foundation for Science (F/4583-1) to Hai-Lei Wei and a grant from the National Natural Science Foundation of China (30760011) to Liping Lei.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Lei Wei.

Additional information

Zhenyuan Xia and Wei Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Z., Zhang, W., Lei, L. et al. Genome-wide investigation of the genes involved in nicotine metabolism in Pseudomonas putida J5 by Tn5 transposon mutagenesis. Appl Microbiol Biotechnol 99, 6503–6514 (2015). https://doi.org/10.1007/s00253-015-6529-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6529-x

Keywords

Navigation