Skip to main content
Log in

Purification and characterization of the molybdoenzymes nicotinate dehydrogenase and 6-hydroxynicotinate dehydrogenase from Bacillus niacini

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The enzymes nicotinate dehydrogenase and 6-hydroxynicotinate dehydrogenase from Bacillus niacini could be purified to homogeneity by means of anion exchange chromatography, hydrophobic interaction chromatography, gel filtration, and chromatography on hydroxylapatite. During enrichment procedures both enzymes showed a significant loss in specific activity. The molecular weight of nicotinate dehydrogenase and 6-hydroxynicotinate dehydrogenase was determined to be about 300,000 and 120,000, respectively. They were highly substrate specific and transferred electrons only to artificial acceptors of high redox potential. The K m for their specific substrates was about 1.0 mM for both enzymes, and their pH optimum was determined to be 7.5. For nicotinate dehydrogenase a content of 8.3 mol iron, 1.5 mol acid-labile sulfur, 2.0 mol flavin, and 1.5 mol molybdenum per mol of enzyme was determined. Both enzymes contained FAD and Fe/S center. After inhibition by KCN, thiocyanate was detected, and subsequently the initial nicotinate dehydrogenase activity was restored by the addition of Na2S indicating the presence of cyanolyzable sulfur. 6-Hydroxynicotinate dehydrogenase seemed to contain the same type of constituents as determined for nicotinate dehydrogenase. A partial immunological identity of the enzymes could be shown by antibodies raised against nicotinate dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCPIP:

2,6-dichlorophenol-indophenol

EEO:

electroendosmosis

FTTC:

fluorescein isothiocyanate

HAP:

hydroxylapatite

6-HDH:

6-hydroxynicotinate dehydrogenase

NBT:

nitroblue tetrazolium chloride

NDH:

nicotinate dehydrogenase

MTT:

thiazolyl blue

PES:

phenazine ethosulfate

PMSF:

phenylmethyl sulfonyl fluoride

TEMED:

N,N,N',N'-tetramethyl-ethylenediamine

References

  • Beedham C (1985) Molybdenum hydroxylases as drug-metabolizing enzymes. Drug Metab Rev 16: 119–156

    Google Scholar 

  • Behrman EJ, Stanier RY (1957) The bacterial oxidation of nicotinic acid. J Biol Chem 228: 923–947

    Google Scholar 

  • Beinert H (1983) Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal Biochem 131: 373–378

    Google Scholar 

  • Berry DF, Francis AJ, Bollag J-M (1987) Microbial metatolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev 51: 43–59

    Google Scholar 

  • Betcher-Lange SL, Coughlan MP, Rajagopalan KV (1979) Syncatalytic modification of chicken liver xanthine dehydrogenase by hydrogen peroxide. J Biol Chem 254: 8825–8829

    Google Scholar 

  • Blackshear PJ (1984) Systems for polyacrylamide gel electrophoresis. Methods Enzymol 104: 237–255

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  • Bray RC (1975) Molybdenum iron-sulfur flavin hydroxylases and related enzymes. In: Boyer PD (ed) The enzymes, vol XII. Academic Press, New York, pp 299–419

    Google Scholar 

  • Burrin D (1984) Immunologische Verfahren. In: Williams BL, Wilson K (eds) Methoden der Biochemie. Thieme Verlag, Stuttgart, pp 316–354

    Google Scholar 

  • Cardenas J, Mortenson LE (1974) Determination of molybdenum and tungsten in biological materials. Anal Biochem 60: 372–381

    Google Scholar 

  • Cleere WF, Coughlan MP (1974) Turkey liver xanthine dehydrogenase. Reactivation of the cyanide-inactivated enzyme by sulphide and selenide. Biochem J 143: 331–340

    Google Scholar 

  • Coughlan MP (1980) Aldehyde oxidase, xanthine oxidase and xanthine dehydrogenase: hydroxylases containing molybdenum, iron-sulphur and flavin. In: Coughlan MP (ed) Molybdenum and molybdenum-containing enzymes. Pergamon Press, Oxford, pp 119–185

    Google Scholar 

  • Coughlan MP, Betcher-Lange SL, Rajagopalan KV (1979) Isolation of the domain containing the molybdenum, iron-sulfur I, and iron-sulfur II centers of chicken liver xanthine dehydrogenase. J Biol Chem 254: 10694–10699

    Google Scholar 

  • Coughlan MP, Johnson JL, Rajagopalan KV (1980) Mechanism of inactivation of molybdoenzymes by cyanide. J Biol Chem 255: 2694–2699

    Google Scholar 

  • Dietrichs D, Meyer M, Schmidt B, Andreesen JR (1990) Purification of NADPH-dependent electron-transferring flavoproteins and N-terminal protein sequence data of dihydrolipoamide dehydrogenases from anaerobic, glycine-utilizing bacteria. J Bacteriol 172: 2088–2095

    Google Scholar 

  • Dilworth GL (1982) Properties of the selenium-containing moiety of nicotinic acid hydroxylase from Clostridium barkeri. Arch Biochem Biophys 219: 30–38

    Google Scholar 

  • Dilworth GL (1983) Occurrence of molybdenum in the nicotinic acid hydroxylase from Clostridium barkeri. Arch Biochem Biophys 221: 565–569

    Google Scholar 

  • Ensign JC, Rittenberg SC (1964) The pathway of nicotinic acid oxidation by a Bacillus species. J Biol Chem 239: 2285–2291

    Google Scholar 

  • Freudenberg W, Koenig K, Andreesen JR (1988) Nicotine dehydroganase from Arthrobacter oxidans: A molybdenum-containing hydroxylase. FEMS Microbiol Lett 52: 13–18

    Google Scholar 

  • Gardlik S, Barber MJ, Rajagopalan KV (1987) A molybdopterinfree form of xanthine oxidase. Arch Biochem Biophys 259: 363–371

    Google Scholar 

  • Gutteridge S, Tanner SJ, Bray RC (1978) Comparison of the molybdenum centres of native and desulfo xanthine oxidase. Biochem J 175: 887–897

    Google Scholar 

  • Hall WW, Krenitsky TA (1986) Aldehyde oxidase from rabbit liver: Specificity toward purines and their analogs. Arch Biochem Biophys 251: 36–46

    Google Scholar 

  • Harris ELV (1989) Purification strategy. In: Harris ELV, Angal S (eds) Protein purification methods — a practical approach. IRL Press, Oxford, pp 51–66

    Google Scholar 

  • Hart LI, McGartoll MA, Chapman HR, Bray RC (1970) The composition of milk xanthine oxidase. Biochem J 116: 851–864

    Google Scholar 

  • hawkes TR, Bray RC (1984) Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulfite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase. Biochem J 219: 481–493

    Google Scholar 

  • Hinton SM, Dean D (1990) Biogenesis of molybdenum cofactors. Crit Rev Microbiol 17: 169–188

    Google Scholar 

  • Hirschberg R, Ensign JC (1971a) Oxidation of nicotinic acid by a Bacillus species: Purification and properties of nicotinic acid and 6-hydroxynicotinic acid hydroxylases. J Bacteriol 108: 751–756

    Google Scholar 

  • Hirschberg R, Ensign JC (1971b) Oxidation of nicotinic acid by a Bacillus species: Source of oxygen atoms for the hydroxylation of nicotinic acid and 6-hydroxynicotinic acid. J Bacteriol 108: 757–759

    Google Scholar 

  • Hirschberg R, Ensign JC (1972) Oxidation of nicotinic acid by a Bacillus species: Regulation of nicotinic acid and 6-hydroxynicotinic acid hydroxylase. J Bacteriol 112: 392–397

    Google Scholar 

  • Hunt AL (1959) Purification of the nicotinic acid hydroxylase system of Pseudomonas fluorescens KB1. Biochem J 72: 1–7

    Google Scholar 

  • Hunt AL, Hughes DE, Lowenstein JM (1958) The hydroxylation of nicotinic acid by Pseudomonas fluorescens. Biochem J 69: 170–173

    Google Scholar 

  • Ikekami T, Nishino T, Tsushima K (1984) The existence of desulfo xanthine dehydrogenase in rat liver. In: Bray RC, Engel PC, Mayhew SG (eds) Flavins and Flavoproteins. Walter de Gruyter, Berlin, pp 703–706

    Google Scholar 

  • Imhoff D, Andreesen JR (1979) Nicotinic acid hydroxylase from Clostridium barkeri: Selenium-dependent formation of active enzyme. FEMS Microbiol Lett 5: 155–158

    Google Scholar 

  • Jacobitz S, Meyer O (1989) Removal of CO dehydrogenase from Pseudomonas carboxydovorans cytoplasmic membranes, rebinding of CO dehydrogenase to depleted membranes, and restoration of respiratory activities. J Bacteriol 171: 6294–6299

    Google Scholar 

  • Jones MV (1973) Cytochrome c linked nicotinic acid hydroxylase in Pseudomonas ovalis Chester. FEBS Lett 32: 321–324

    Google Scholar 

  • Jurd RD (1981) Immunoelectrophoresis. In: Hames BD, Rickwood D (eds) Gel electrophoresis of proteins. IRL Press, Oxford, pp 229–248

    Google Scholar 

  • Kim K, Rhee SG, Stadtman ER (1985) Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron. J Biol Chem 260: 15394–15397

    Google Scholar 

  • Koenig K, Andreesen JR (1989) Molybdenum involvement in aerobic degradation of 2-furoic acid by Pseudomonas putida Fu1. Appl Environ Microbiol 55: 1829–1834

    Google Scholar 

  • Kramer SP, Johnson JL, Ribeiro AA, Millington DS, Rajagopalan KV (1987) The structure of the molybdenum cofactor. J Biol Chem 262: 16357–16363

    Google Scholar 

  • Krenitsky TA, Neil SM, Elion GB, Hitchings GH (1972) A comparison of the specificities of xanthine oxidase and aldehyde oxidase. Arch Biochem Biophys 150: 585–599

    Google Scholar 

  • Kretzer A (1989) Untersuchungen zum aeroben, bakteriellen Abbau von Isonikotinsäure, Chinolin und Thiophen-2-carbonsäure. Diploma thesis, University of Göttingen

  • Krüger B, Meyer O (1986) The pterin (Bactopterin) of carbon monoxide dehydrogenase from Pseudomonas carboxydoflava. Eur J Biochem 157: 121–128

    Google Scholar 

  • Krüger B, Meyer O, Nagel M, Andreesen JR, Meincke M, Bock F, Blümle S, Zumft WG (1987) Evidence for the presence of bactopterin in the eubacterial molybdoenzymes nicotinic acid dehydrogenase, nitrit oxidoreductase, and respiratory nitrate reductase. FEMS Microbiol Lett 48: 225–227

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    PubMed  Google Scholar 

  • Massey V, Edmondson D (1970) On the mechanism of inactivation of xanthine oxidase by cyanide. J Biol Chem 245: 6595–6598

    Google Scholar 

  • Mehra RK, Coughlan MP (1989) Characterization of purine hydroxylase I from Aspergillus nidulans. J Gen Microbiol 135: 273–278

    Google Scholar 

  • Meyer O (1982) Chemical and spectral properties of carbon monoxide:methylene blue oxidoreductase. J Biol Bhem 257: 1333–1341

    Google Scholar 

  • Meyer O (1989) Aerobic carbon monoxide-oxidizing bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech Publishers, Madison, Springer-Verlag, Berlin, pp 331–350

    Google Scholar 

  • Meyer O, Jacobitz S, Krüger B (1986) Biochemistry and physiology of aerobic carbon monoxide-utilizing bacteria. FEMS Microbiol Rev 39: 161–179

    Google Scholar 

  • Michal G, Möllering H, Siedel J (1983) Chemical design of indicator reactions for the visible range. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol I. Verlag Chemie, Weinheim, pp 197–232

    Google Scholar 

  • Nagel M (1989) Enzymatische und stoffwechselphysiologische Untersuchungen zum aeroben bakteriellen Abbau von Nicotinsäure und Dipicolinsäure and Anwendung verschiedener HPLC-Techniken zur Auftrennung heteroaromatischer Säuren. Ph.D. thesis, University of Göttingen

  • Nagel M, Andreesen JR (1989) Molybdenum-dependent degradation of nicotinic acid by Bacillus sp. DSM 2923. FEMS Microbiol Lett 59: 147–152

    Google Scholar 

  • Nagel M, Koenig K, Andreesen JR (1989) Bactopterin as component of eubacterial dehydrogenases involved in hydroxylation reactions initiating the degradation of nicotine, nicotinate, and 2-furancarboxylate. FEMS Microbiol Lett 60: 323–326

    Google Scholar 

  • Nagler LG, Vartanyan LS (1976) Subunit structure of bovine milk xanthine oxidase: Effect of limited cleavage by proteolytic enzymes on activity and structure. Biochim Biophys Acta 427: 78–90

    Google Scholar 

  • Rajagopalan KV (1988) Molybdenum: An essential trace element in human nutrition. Ann Rev Nutr 8: 401–427

    Google Scholar 

  • Rajagopalan KV, Handler P (1964) The absorption spectra of ironflavoproteins. J Biol Chem 239: 1509–1514

    Google Scholar 

  • Richmond R, Halliwell B, Chauhan J, Darbre A (1981) Superoxide-dependent formation of hydroxyl radicals: Detection of radicals by the hydroxylation of aromatic compounds. Anal Biochem 118: 328–335

    Google Scholar 

  • Rienhöfer A (1985) Strukturelle und immunologische Untersuchungen zur Xanthin-Dehydrogenase aus Butyribacterium barkeri, ein Seleno-Molybdo-Eisen-Schwefel-Flavoprotein. Ph.D. thesis, University of Göttingen

  • Santini C-L, Karibian D, Vasishta A, Boxer D, Giordano G (1989) Escherichia coli molybdoenzymes can be activated by protein FA from several Gram-negative bacteria. J Gen Microbiol 135: 3467–3475

    Google Scholar 

  • Shukla OP (1984) Microbial transformation of pyridine derivatives. J Scient Ind Res 43: 98–116

    Google Scholar 

  • Siegmund I (1988) Unterschungen zum Picolinat-Abbau aerober Bakterien. Diploma thesis, University of Göttingen

  • Siegmund I, Koenig K, Andreesen JR (1990) Molybdenum involvement in aerobic degradation of picolinic acid by Arthrobacter picolinophilus. FEMS Microbiol Lett 67: 281–284

    Google Scholar 

  • Turner N, Barata B, Bray RC, Deistung J, LeGall J, Moura JJG (1987) The molybdenum iron-sulphur protein from Desulfovibrio gigas as a form of aldehyde oxidase. Biochem J 243: 755–761

    Google Scholar 

  • van deBogart M, Beinert H (1967) Micro methods for the quantitative determination of iron and copper in biological material. Anal Biochem 20: 325–334

    Google Scholar 

  • vanSpanning RJM, Wansell-Bettenhausen CW, Oltmann LF, Stouthamer AH (1987) The oxidation product of molybdenum cofactor from milk xanthine oxidase. Biochem Int 15: 185–196

    Google Scholar 

  • Ventom A, Bray RC (1984) Re-sulphuration of xanthine oxidase. In: Bray RC, Engel PC, Mayhew SG (eds) Flavins and flavoproteins. Walter de Gruyter, Berlin, pp 695–698

    Google Scholar 

  • Wagner R, Cammack R, Andreesen JR (1984) Purification and characterization of xanthine dehydrogenase from Clostridium acidiurici grown in the presence of selenium. Biochim Biophys Acta 791: 63–74

    Google Scholar 

  • Wahl RC, Warner CK, Finnerty V, Rajagopalan KV (1982) Drosophila melanogaster ma-1 mutants are defective in the sulfuration of desulfo molybdenum hydroxylases. J Biol Chem 257: 3958–3962

    Google Scholar 

  • wahl RC, Hageman RV, Rajagopalan KV (1984) The relationship of Mo, molydopterin, and the cyanolyzable sulfur in the Mo cofactor. Arch Biochem Biophys 230: 264–273

    Google Scholar 

  • Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244: 4406–4412

    Google Scholar 

  • Westley J (1981) Thiosulfate: cyanide sulfurtransferase (rhodanese). Meth Enzymol 77: 285–291

    Google Scholar 

  • Wilson CM (1973) Polyacrylamide gel electrophoresis of proteins: impurities in amido black used for staining. Anal Biochem 53: 538–544

    Google Scholar 

  • Worsfold M, Marshall MJ, Ellis EB (1977) Enzyme detection using phenazine methosulfate and tetrazolium salts: interference by oxygen. Anal Biochem 79: 152–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, M., Andreesen, J.R. Purification and characterization of the molybdoenzymes nicotinate dehydrogenase and 6-hydroxynicotinate dehydrogenase from Bacillus niacini . Arch. Microbiol. 154, 605–613 (1990). https://doi.org/10.1007/BF00248844

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248844

Key words

Navigation