Skip to main content
Log in

In vitro rapid evolution of fungal immunomodulatory proteins by DNA family shuffling

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fungal immunomodulatory proteins (FIPs) found in a wide variety of mushrooms hold significant therapeutic potential. Despite much research, the structural determinants for their immunomodulatory functions remain unknown. In this study, a DNA shuffling technique was used to create two shuffled FIP protein libraries: an intrageneric group containing products of shuffling between FIP-glu (FIP gene isolated from Ganoderma lucidum) and FIP-gsi (FIP gene isolated from Ganoderma sinense) genes and an intergeneric group containing the products of shuffling between FIP-glu, FIP-fve (FIP gene isolated from Flammulina velutipes), and FIP-vvo (FIP gene isolated from Volvariella volvacea) genes. The gene shuffling generated 426 and 412 recombinant clones, respectively. Using colony blot analysis, we selected clones that expressed relatively high levels of shuffled gene products recognized by specific polyclonal antibodies. We analyzed the DNA sequences of the selected shuffled genes, and testing of their protein products revealed that they maintained functional abilities to agglutinate blood cells and induce cytokine production by splenocytes from Kunming mice in vitro. Meanwhile, the relationships between protein structure and the hemagglutination activity and between the changed nucleotide sites and expression levels were explored by bioinformatic analysis. These combined analyses identified the nucleotide changes involved in regulating the expression levels and hemagglutination activities of the FIPs. Therefore, we were able to generate recombinant FIPs with improved biological activities and expression levels by using DNA shuffling, a powerful tool for the generation of novel therapeutic proteins and for their structural and functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aharoni A, Gaidukov L, Yagur S, Toker L, Silman I, Tawfik DS (2004) Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization. Proc Natl Acad Sci USA 101:482–487. doi:10.1073/pnas.2536901100

    Article  CAS  Google Scholar 

  • Alonso S, Minty A, Bourlet Y, Buckingham M (1986) Comparison of three actin-coding sequences in the mouse; evolutionary relationships between the actin genes of warm-blooded vertebrates. J Mol Evol 23:11–22. doi:10.1007/BF02100994

    Article  CAS  Google Scholar 

  • Baik SH, Ide T, Yoshida H, Kagami O, Harayama S (2003) Significantly enhanced stability of glucose dehydrogenase by directed evolution. Appl Microbiol Biotechnol 61:329–335. doi:10.1007/s00253-002-1215-1

    CAS  Google Scholar 

  • Chang CCJ, Chen TT, Cox BW, Dawes GN, Stemmer WPC, Punnonen J, Patten PA (1999) Evolution of a cytokine using DNA family shuffling. Nat Biotechnol 17:793–797. doi:10.1038/11737

    Article  CAS  Google Scholar 

  • Crameri A, Raillard SA, Bermudez E, Stemmer WPC (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391:288–291. doi:10.1038/34663

    Article  CAS  Google Scholar 

  • Fung MC, Hapel AJ, Ymer S, Cohen DR, Johnson RM, Campbell HD, Young IG (1984) Molecular cloning of cDNA for murine interleukin-3. Nature 307:233–237. doi:10.1038/307233a0

    Article  CAS  Google Scholar 

  • Gray PW, Goeddel DV (1983) Cloning and expression of murine immune interferon cDNA. Proc Natl Acad Sci USA 80:5842–5846. doi:10.1073/pnas.80.19.5842

    Article  CAS  Google Scholar 

  • Haak-Frendscho M, Kino K, Sone T, Jardieu P (1993) Ling Zhi-8: a novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell Immunol 105:101–113. doi:10.1006/cimm.1993.1182

    Article  Google Scholar 

  • Hao J, Berry A (2004) A thermostable variant of fructose bisphosphate aldolase constructed by directed evolution also shows increased stability in organic solvents. Protein Eng Des Sel 17:689–697. doi:10.1093/protein/gzh081

    Article  CAS  Google Scholar 

  • Hsu HC, Hsu CI, Lin RH, Kao CL, Lin JY (1997) Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. J Biol Chem 323:557–565

    CAS  Google Scholar 

  • Jermutus L, Honegger A, Schwesinger F, Hanes J, Plückthun A (2001) Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci USA 98:75–80. doi:10.1073/pnas.011311398

    Article  CAS  Google Scholar 

  • Jung S, Honegger A, Plückthun A (1999) Selection for improved protein stability by phage display. J Mol Biol 294:163–180. doi:10.1006/jmbi.1999.3196

    Article  CAS  Google Scholar 

  • Kaper T, Brouns SJJ, Geerling ACM, De Vos WM, Van der Oost J (2002) DNA family shuffling of hyperthermostable beta-glycosidases. Biochem J 368:461–470. doi:10.1042/BJ20020726

    Article  CAS  Google Scholar 

  • Kashima N, Nishi-Takaoka C, Fujita T, Taki S, Yamada G, Hamuro J, Taniguchi T (1985) Unique structure of murine interleukin-2 as deduced from cloned cDNAs. Nature 313:402–404. doi:10.1038/313402a0

    Article  CAS  Google Scholar 

  • Kikuchi M, Ohnishi K, Harayama S (2000) An effective family shuffling method using single-stranded DNA. Gene 243:133–137. doi:10.1016/S0378-1119(99)00547-8

    Article  CAS  Google Scholar 

  • Kinashi T, Harada N, Severinson E, Tanabe T, Sideras P, Konishi M, Azuma C, Tominaga A, Bergstedt-Lindqvist S, Takahashi M (1986) Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II. Nature 324:70–73. doi:10.1038/324070a0

    Article  CAS  Google Scholar 

  • Kino K, Yamashita A, Yamaoka K, Watanabe J, Tanaka S, Ko K, Shimizu K, Tsunoo H (1989) Isolated and characterization of a new immunomodulatory protein Ling Zhi-8 (LZ-8), from Ganoderma lucidium. J Biol Chem 264:472–478

    CAS  Google Scholar 

  • Ko JL, Hsu CI, Lin RH, Kao CL, Lin JY (1995) A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur J Biochem 228:244–249. doi:10.1111/j.1432-1033.1995.0244n.x

    Article  CAS  Google Scholar 

  • Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258. doi:10.1126/science.1170160

    Article  CAS  Google Scholar 

  • Leong SR, Chang JC, Ong R, Dawes G, Stemmer WPC, Punnonen J (2004) Optimized expression and specific activity of IL-12 by directed molecular evolution. Proc Natl Acad Sci USA 100:1163–1168. doi:10.1073/pnas.0237327100

    Article  Google Scholar 

  • Li QZ, Huang L, Zhou XW, Tang KX (2008) Principle and application of DNA shuffling technology in directed evolution of therapeutic protein. Chin Remedies Clin 8:589–593 (in Chinese)

    Google Scholar 

  • Li QZ, Wang XF, Bao TW, Ran L, Lin J, Zhou XW (2010a) In vitro synthesis of a recombinant fungal immunomodulatory protein from Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae) and analysis of its immunomodulatory activity. Int J Med Mushrooms 12:347–358. doi:10.1615/IntJMedMushr.v12.i4.20

    Article  CAS  Google Scholar 

  • Li QZ, Wang XF, Chen YY, Lin J, Zhou XW (2010b) Cytokines expression induced by Ganoderma sinensis fungal immunomodulatory proteins (FIP-gsi) in mouse spleen cells. Appl Biochem Biotechnol 162:1403–1413. doi:10.1007/s12010-010-8916-1

    Article  CAS  Google Scholar 

  • Li QZ, Huang L, Wang XF, Li XS, Wu SQ, Zhou XW (2011a) Fungal immunomodulatory protein from Flammulina velutipes induces cytokine gene expression in mouse spleen cells. Curr Top Nutraceut Res 9:111–118

    Google Scholar 

  • Li QZ, Wang XF, Zhou XW (2011b) Recent status and prospects of the fungal immunomodulatory protein family. Crit Rev Biotechnol 31:365–375. doi:10.3109/07388551.2010.543967

    Article  Google Scholar 

  • Li QZ, Zheng SB, Wang XF, Bao TW, Zhou XW (2011c) Preparation of rabbit anti-Ganoderma sinensis immunomodulatory protein polyclonal antibody. Afr J Microbiol Res 5:1562–1564

    CAS  Google Scholar 

  • Lin TL, Qiao B (2009) Immunomodulatory protein cloned from Ganoderma microsporum. US patent no. 7601808 B2

  • Lin WH, Hung CH, Hsu CI, Lin JY (1997) Dimerization of the N-terminal amphipathic a-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J Biol Chem 272:20044–20048. doi:10.1074/jbc.272.32.20044

    Article  CAS  Google Scholar 

  • Lomedico PT, Gubler U, Hellmann CP, Dukovich M, Giri JG, Pan YCE, Collier K, Semionow R, Chua AO, Mizel SB (1984) Cloning and expression of murine interleukin-1 cDNA in Escherichia coli. Nature 312:458–462. doi:10.1038/312458a0

    Article  CAS  Google Scholar 

  • Maggi E, Biswas P, Del Prete G, Parronchi P, Macchia D, Simonelli C, Emmi L, De Carli M, Tiri A, Ricci M (1991) Accumulation of Th-2-like helper T cells in the conjunctiva of patients with vernal conjunctivitis. J Immunol 146:1169–1174

    CAS  Google Scholar 

  • Miller J, Malek TR, Leonard WJ, Greene WC, Shevach EM, Germain RN (1985) Nucleotide sequence and expression of a mouse interleukin 2 receptor cDNA. J Immunol 134:4212–4217

    CAS  Google Scholar 

  • Otsuka T, Villaret D, Yokota T, Takebe Y, Lee F, Arai N, Arai K (1987) Structural analysis of the mouse chromosomal gene encoding interleukin 4 which expresses B cell, T cell and mast cell stimulating activities. Nucleic Acids Res 15:333–344. doi:10.1093/nar/15.1.333

    Article  CAS  Google Scholar 

  • Pennica D, Hayflick JS, Bringman TS, Palladino MA, Goeddel DV (1985) Cloning and expression in Escherichia coli of the cDNA for murine tumor necrosis factor. Proc Natl Acad Sci USA 82:6060–6064. doi:10.1073/pnas.82.18.6060

    Article  CAS  Google Scholar 

  • Powell SK, Kaloss MA, Pinkstaff A, McKee R, Burimski I, Pensiero M, Otto E, Stemmer WPC, Soong NW (2000) Breeding of retroviruses by DNA shuffling for improved stability and processing yields. Nat Biotechnol 18:1279–1282. doi:10.1038/82391

    Article  CAS  Google Scholar 

  • Rengarajan J, Szabo SJ, Glimcher LH (2000) Transcriptional regulation of Th1/Th2 polarization. Immunol Today 21:479–483. doi:10.1016/S0167-5699(00)01712-6

    Article  CAS  Google Scholar 

  • Romagnani S (1992) Induction of TH1 and TH2 responses: a key role for the ‘natural’ immune response? Immunol Today 13:379–381. doi:10.1016/0167-5699(92)90083-JDOI:dx.doi.org

    Article  CAS  Google Scholar 

  • Scaldaferro S, Tinelli S, Borgnetto ME, Azzini A, Capranico G (2001) Directed evolution to increase camptothecin sensitivity of human DNA topoisomerase I. Chem Biol 8:871–881. doi:10.1016/S1074-5521(01)00059-X

    Article  CAS  Google Scholar 

  • Snick JV, Cayphas S, Szikora JP, Renauld JC, Roost EV, Boon T, Sirnpson RJ (1988) cDNA cloning of murine interleukin-HP1: homology with human interleukin 6. Eur J Immunol 18:193–197. doi:10.1002/eji.1830180202

    Article  Google Scholar 

  • Stemmer WPC (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA 91:10747–10751. doi:10.1073/pnas.91.22.10747

    Article  CAS  Google Scholar 

  • Stemmer WPC (1995) Searching sequence space. Nat Biotechnol 13:549–553. doi:10.1038/nbt0695-549

    Article  CAS  Google Scholar 

  • Stoop AA, Eldering E, Dafforn TR, Read RJ, Pannekoek H (2001) Different structural requirements for plasminogen activator inhibitor 1 (PAI-1) during latency transition and proteinase inhibition as evidenced by phage-displayed hypermutated PAI-1 libraries. J Mol Biol 305:773–783

    Article  CAS  Google Scholar 

  • Sugiyama M, Yamamoto E, Mukai Y, Kaneko Y, Nishizawa M, Harashima S (2006) Chromosome-shuffling technique for selected chromosomal segments in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 72:947–952. doi:10.1007/s00253-006-0342-5

    Article  CAS  Google Scholar 

  • Turetskaya R, Fashena SJ, Paul NL, Ruddle NH (1992) In: Aggarwal BB, Vilcek J (eds) Tumor necrosis factors: structure, function and mechanism of action. Marcel Dekker, New York, pp 35–60

    Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646. doi:10.1038/415644a

    Article  CAS  Google Scholar 

  • Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16:258–261. doi:10.1038/nbt0398-258

    Article  CAS  Google Scholar 

  • Zhou XW, Chen WQ, Deng BW, Wang Z, Peng H, Lin J (2005) Application of biotechnology to exploitation and preservation of medicinal fungi. Chin Tradit Herb Drugs 36:451–455 (in Chinese)

    Google Scholar 

  • Zhou XW, Lin J, Li QZ, Yin YZ, Sun XF, Tang KX (2007) Study progress on bioactive proteins from Ganoderma spp. Nat Prod Res Dev 19:916–924 (in Chinese)

    Google Scholar 

  • Zhou XW, Li QZ, Lin J (2009a) The nucleotide sequence coding fungal immunomodulatory protein from Volvaria volvacea. Chinese patent. Application No. 200910047782.3. (in Chinese)

  • Zhou XW, Xie MQ, Hong F, Li QZ, Lin J (2009b) Genomic cloning and characterization of a FIP-gsi gene encoding a fungal immunomodulatory protein from Ganoderma sinensis Zhao et al (Aphyllophoromycetideae). Int J Med Mushrooms 11:77–86. doi:10.1615/IntJMedMushr.v11.i1.90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 30771500), the Shanghai Science and Technology Committee, and the Shanghai Leading Academic Discipline Project (Project Number: B209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-Wei Zhou.

Additional information

Xue-Fei Wang and Qi-Zhang Li contributed equally to this work and share first authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2930 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XF., Li, QZ., Bao, TW. et al. In vitro rapid evolution of fungal immunomodulatory proteins by DNA family shuffling. Appl Microbiol Biotechnol 97, 2455–2465 (2013). https://doi.org/10.1007/s00253-012-4131-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4131-z

Keywords

Navigation