Skip to main content

Advertisement

Log in

Exceptionally high conservation of the MHC class I-related gene, MR1, among mammals

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The major histocompatibility complex (MHC) class I-related gene, MR1, is a non-classical MHC class IA gene and is encoded outside the MHC region. The MR1 is responsible for activation of mucosal-associated invariant T (MAIT) cells expressing semi-invariant T cell receptors in the presence of bacteria, but its ligand has not been identified. A unique characteristic of MR1 is its high evolutionary conservation of the α1 and α2 domains corresponding to the peptide-binding domains of classical MHC class I molecules, showing about 90 % amino acid identity between human and mouse. To clarify the evolutionary history of MR1 and identify more critically conserved residues for the function of MR1, we searched for the MR1 gene using jawed vertebrate genome databases and isolated the MR1 cDNA sequences of marsupials (opossum and wallaby). A comparative genomic analysis indicated that MR1 is only present in placental and marsupial mammals and that the gene organization around MR1 is well conserved among analyzed jawed vertebrates. Moreover, the α1 and α2 domains, especially in amino acid residues presumably shaping a ligand-binding groove, were also highly conserved between placental and marsupial MR1. These findings suggest that the MR1 gene might have been established at its present location in a common ancestor of placental and marsupial mammals and that the shape of the putative ligand-binding groove in MR1 has been maintained, probably for presenting highly conserved component(s) of microbes to MAIT cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamski FM, King AT, Demmer J (2000) Expression of the Fc receptor in the mammary gland during lactation in the marsupial Trichosurus vulpecula (brushtail possum). Mol Immunol 37:435–444

    Article  PubMed  CAS  Google Scholar 

  • Araki T, Gejyo F, Takagaki K, Haupt H, Schwick HG, Bürgi W, Marti T, Schaller J, Rickli E, Brossmer R (1988) Complete amino acid sequence of human plasma Zn-alpha 2-glycoprotein and its homology to histocompatibility antigens. Proc Natl Acad Sci USA 85:679–683

    Article  PubMed  CAS  Google Scholar 

  • Baker ML, Miller RD (2007) Evolution of mammalian CD1: marsupial CD1 is not orthologous to the eutherian isoforms and is a pseudogene in the opossum Monodelphis domestica. Immunology 121:113–121

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  PubMed  CAS  Google Scholar 

  • Borg NA, Wun KS, Kjer-Nielsen L, Wilce MCJ, Pellicci DG, Koh R, Besra GS, Bharadwaj M, Godfrey DI, McCluskey J, Rossjohn J (2007) CD1d–lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448:44–49

    Article  PubMed  CAS  Google Scholar 

  • Calabi F, Milstein C (1986) A novel family of human major histocompatibility complex-related genes not mapping to chromosome 6. Nature 323:540–543

    Article  PubMed  CAS  Google Scholar 

  • Consortium TM (1999) Complete sequence and gene map of a human major histocompatibility complex. The MHC sequencing consortium. Nature 401:921–923

    Article  Google Scholar 

  • Cosman D, Müllberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133

    Article  PubMed  CAS  Google Scholar 

  • Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, Milder M, Le Bourhis L, Soudais C, Treiner E, Lantz O (2011) Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117:1250–1259

    Article  PubMed  CAS  Google Scholar 

  • Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R, Ellis MC, Fullan A, Hinton LM, Jones NL, Kimmel BE, Kronmal GS, Lauer P, Lee VK, Loeb DB, Mapa FA, McClelland E, Meyer NC, Mintier GA, Moeller N, Moore T, Morikang E, Prass CE, Quintana L, Starnes SM, Schatzman RC, Brunke KJ, Drayna DT, Risch NJ, Bacon BR, Wolff RK (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408

    Article  PubMed  CAS  Google Scholar 

  • Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15:351–362

    Article  PubMed  CAS  Google Scholar 

  • Fukudome K, Esmon CT (1994) Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor. J Biol Chem 269:26486–26491

    PubMed  CAS  Google Scholar 

  • Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC (1996) Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384:134–141

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DI, Pellicci DG, Patel O, Kjer-Nielsen L, McCluskey J, Rossjohn J (2010) Antigen recognition by CD1d-restricted NKT T cell receptors. Semin Immunol 22:61–67

    Article  PubMed  CAS  Google Scholar 

  • Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua W-J, Yu YYL, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM (2010) Human mucosal associated invariant T cells detect bacterially infected cells (P Marrack, Ed.). PLoS Biol 8:e1000407

    Article  PubMed  Google Scholar 

  • Goldfinch N, Reinink P, Connelley T, Koets A, Morrison I, Van Rhijn I (2010) Conservation of mucosal associated invariant T (MAIT) cells and the MR1 restriction element in ruminants, and abundance of MAIT cells in spleen. Vet Res 41:62

    Article  PubMed  Google Scholar 

  • Hashimoto K, Hirai M, Kurosawa Y (1995) A gene outside the human MHC related to classical HLA class I genes. Science 269:693–695

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Hirai M, Kurosawa Y (1997) Identification of a mouse homolog for the human hereditary haemochromatosis candidate gene. Biochem Biophys Res Commun 230:35–39

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Martin E, Kim S, Yu L, Soudais C, Fremont DH, Lantz O, Hansen TH (2009) MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. Proc Natl Acad Sci USA 106:8290–8295

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury J-M, Brunet F, Petit J-L, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau J-P, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff J-N, Guigó R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Kasahara M (1997) New insights into the genomic organization and origin of the major histocompatibility complex: role of chromosomal (genome) duplication in the emergence of the adaptive immune system. Hereditas 127:59–65

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M (2007) The 2R hypothesis: an update. Curr Opin Immunol 19:547–552

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Watanabe Y, Sumasu M, Nagata T (2002) A family of MHC class I-like genes located in the vicinity of the mouse leukocyte receptor complex. Proc Natl Acad Sci USA 99:13687–13692

    Article  PubMed  CAS  Google Scholar 

  • Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of major histocompatibility complexes. Immunogenetics 56:683–695

    Article  PubMed  CAS  Google Scholar 

  • Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RAJ, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. doi:10.1038/nature11605

  • Kondo M, Maruoka T, Otsuka N, Kasamatsu J, Fugo K, Hanzawa N, Kasahara M (2010) Comparative genomic analysis of mammalian NKG2D ligand family genes provides insights into their origin and evolution. Immunogenetics 62:441–450

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Le Bourhis L, Martin E, Péguillet I, Guihot A, Froux N, Coré M, Lévy E, Dusseaux M, Meyssonnier V, Premel V, Ngo C, Riteau B, Duban L, Robert D, Rottman M, Soudais C, Lantz O (2010) Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 11:701–708

    Article  PubMed  Google Scholar 

  • Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, Premel V, Devys A, Moura IC, Tilloy F, Cherif S, Vera G, Latour S, Soudais C, Lantz O (2009) Stepwise development of MAIT cells in mouse and human. PLoS Biol 7:e54

    Article  PubMed  Google Scholar 

  • Maruoka T, Tanabe H, Chiba M, Kasahara M (2005) Chicken CD1 genes are located in the MHC: CD1 and endothelial protein C receptor genes constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals. Immunogenetics 57:590–600

    Article  PubMed  CAS  Google Scholar 

  • Miller MM, Wang C, Parisini E, Coletta RD, Goto RM, Lee SY, Barral DC, Townes M, Roura-Mir C, Ford HL, Brenner MB, Dascher CC (2005) Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proc Natl Acad Sci USA 102:8674–8679

    Article  PubMed  CAS  Google Scholar 

  • Okamoto N, Kanie O, Huang Y-Y, Fujii R, Watanabe H, Shimamura M (2005) Synthetic alpha-mannosyl ceramide as a potent stimulant for an NKT cell repertoire bearing the invariant Valpha19-Jalpha26 TCR alpha chain. Chem Biol 12:677–683

    Article  PubMed  CAS  Google Scholar 

  • Parra-Cuadrado J, del Moral M, Garc x000ED a-Pav x000ED a P, Seti x000E9 n F, Mart x000ED nez-Naves E (2001) Characterization of the MHC class I-related MR1 locus in nonhuman primates. Immunogenetics 53:643–648

    Google Scholar 

  • Reantragoon R, Kjer-Nielsen L, Patel O, Chen Z, Illing PT, Bhati M, Kostenko L, Bharadwaj M, Meehan B, Hansen TH, Godfrey DI, Rossjohn J, McCluskey J (2012) Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor. J Exp Med 209(4):761–774

    Article  PubMed  CAS  Google Scholar 

  • Phillips MJ, Bennett TH, Lee MS (2009) Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. Proc Natl Acad Sci USA 106(40):17089–17094

    Article  PubMed  CAS  Google Scholar 

  • Riegert P, Wanner V, Bahram S (1998) Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene. J Immunol 161:4066–4077

    PubMed  CAS  Google Scholar 

  • Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17:739–779

    Article  PubMed  CAS  Google Scholar 

  • Salomonsen J, Sørensen MR, Marston DA, Rogers SL, Collen T, van Hateren A, Smith AL, Beal RK, Skjødt K, Kaufman J (2005) Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proc Natl Acad Sci USA 102:8668–8673

    Article  PubMed  CAS  Google Scholar 

  • Shimamura M, Huang Y-Y, Okamoto N, Suzuki N, Yasuoka J, Morita K, Nishiyama A, Amano Y, Mishina T (2007) Modulation of Valpha19 NKT cell immune responses by alpha-mannosyl ceramide derivatives consisting of a series of modified sphingosines. Eur J Immunol 37:1836–1844

    Article  PubMed  CAS  Google Scholar 

  • Simister NE, Mostov KE (1989) An Fc receptor structurally related to MHC class I antigens. Nature 337:184–187

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, de La Salle H, Bendelac A, Bonneville M, Lantz O (1999) An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammal. J Exp Med 189:1907–1921

    Article  PubMed  CAS  Google Scholar 

  • Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164–169

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101:1638–1643

    Article  PubMed  CAS  Google Scholar 

  • Walter L, Günther E (1998) Isolation and molecular characterization of the rat MR1 homologue, a non-MHC-linked class I-related gene. Immunogenetics 47:477–482

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Hashimoto K (2002) Association of MR1 protein, an MHC class I-related molecule, with beta(2)-microglobulin. Biochem Biophys Res Commun 290:722–729

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Hirai M, Kurosawa Y, Hashimoto K (1997) A highly conserved major histocompatibility complex class I-related gene in mammals. Biochem Biophys Res Commun 238:697–702

    Article  PubMed  CAS  Google Scholar 

  • Zou Z, Nomura M, Takihara Y, Yasunaga T, Shimada K (1996) Isolation and characterization of retinoic acid-inducible cDNA clones in F9 cells: a novel cDNA family encodes cell surface proteins sharing partial homology with MHC class I molecules. J Biochem 119:319–328

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2008–2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichiro Hashimoto.

Additional information

Data deposition: Accessions AB719956–AB719958 and BR000973

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOC 139 kb)

ESM2 (DOC 58 kb)

ESM3 (DOC 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukamoto, K., Deakin, J.E., Graves, J.A.M. et al. Exceptionally high conservation of the MHC class I-related gene, MR1, among mammals. Immunogenetics 65, 115–124 (2013). https://doi.org/10.1007/s00251-012-0666-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-012-0666-5

Keywords

Navigation