Skip to main content
Log in

Structure and function of the non-classical major histocompatibility complex molecule MR1

  • Review
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Polymorphic major histocompatibility complex (MHC) molecules play a central role in the vertebrate adaptive immune system. By presenting short peptides derived from pathogen-derived proteins, these “classical” MHC molecules can alert the T cell branch of the immune system of infected cells and clear the pathogen. There exist other “non-classical” MHC molecules, which while similar in structure to classical MHC proteins, are contrasted by their limited polymorphism. While the functions of many class Ib MHC molecules have still to be elucidated, the nature and diversity of antigens (if any) that some of them might present to the immune system is expected to be more restricted and might function as another approach to distinguish self from non-self. The MHC-related 1 (MR1) molecule is a member of this family of non-classical MHC proteins. It was recently shown to present unique antigens in the form of vitamin metabolites found in certain microbes. MR1 is strongly conserved genetically, structurally, and functionally through mammalian evolution, indicating its necessity in ensuring an effective immune system for members of this class. Although MR1 will be celebrating 21 years this year since its discovery, most of our understanding of how this molecule functions has only been uncovered in the past decade. Herein, we discuss where MR1 is expressed, how it selectively is able to bind to its appropriate antigens and how it, then, is able to specifically activate a distinct population of T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amadou C, Younger RM, Sims S, Matthews LH, Rogers J, Kumanovics A, Ziegler A, Beck S, Lindahl KF (2003) Co-duplication of olfactory receptor and MHC class I genes in the mouse major histocompatibility complex. Hum Mol Genet 12:3025–40

    Article  CAS  PubMed  Google Scholar 

  • Bhati M, Cole DK, McCluskey J, Sewell AK, Rossjohn J (2014) The versatility of the alphabeta T-cell antigen receptor. Protein Sci 23:260–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkinshaw RW, Kjer-Nielsen L, Eckle SB, McCluskey J, Rossjohn J (2014) MAITs, MR1 and vitamin B metabolites. Curr Opin Immunol 26:7–13

    Article  CAS  PubMed  Google Scholar 

  • Bjorck L, Miorner H, Kuhnemund O, Kronvall G, Sundler R (1984) On the interaction between beta 2-microglobulin and group A streptococci. Scand J Immunol 20:69–79

    Article  CAS  PubMed  Google Scholar 

  • Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    Article  CAS  PubMed  Google Scholar 

  • Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, Kronenberg M (1998) CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 188:1521–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerundolo V, Silk JD, Masri SH, Salio M (2009) Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 9:28–38

    Article  CAS  PubMed  Google Scholar 

  • Chua WJ, Kim S, Myers N, Huang S, Yu L, Fremont DH, Diamond MS, Hansen TH (2011) Endogenous MHC-related protein 1 is transiently expressed on the plasma membrane in a conformation that activates mucosal-associated invariant T cells. J Immunol 186:4744–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbett AJ, Eckle SB, Birkinshaw RW, Liu L, Patel O, Mahony J, Chen Z, Reantragoon R, Meehan B, Cao H, Williamson NA, Strugnell RA, Van Sinderen D, Mak JY, Fairlie DP, Kjer-Nielsen L, Rossjohn J, McCluskey J (2014) T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509:361–5

    Article  CAS  PubMed  Google Scholar 

  • Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334:395–402

    Article  CAS  PubMed  Google Scholar 

  • Eckle SB, Birkinshaw RW, Kostenko L, Corbett AJ, McWilliam HE, Reantragoon R, Chen Z, Gherardin NA, Beddoe T, Liu L, Patel O, Meehan B, Fairlie DP, Villadangos JA, Godfrey DI, Kjer-Nielsen L, McCluskey J, Rossjohn J (2014) A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. J Exp Med 211:1585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckle SB, Corbett AJ, Keller AN, Chen Z, Godfrey DI, Liu L, Mak JY, Fairlie DP, Rossjohn J, McCluskey J (2015) Recognition of vitamin B precursors and byproducts by mucosal associated invariant T cells. J Biol Chem 290:30204–11

    CAS  PubMed  Google Scholar 

  • Fortin JS, Cloutier M, Thibodeau J (2013) Exposing the specific roles of the invariant chain isoforms in shaping the MHC class II peptidome. Front Immunol 4:443

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao GF, Rao Z, Bell JI (2002) Molecular coordination of alphabeta T-cell receptors and coreceptors CD8 and CD4 in their recognition of peptide-MHC ligands. Trends Immunol 23:408–13

    Article  PubMed  Google Scholar 

  • Gapin L (2016) Development of invariant natural killer T cells. Curr Opin Immunol 39:68–74

    Article  CAS  PubMed  Google Scholar 

  • Geraghty DE, Koller BH, Pei J, Hansen JA (1992) Examination of four HLA class I pseudogenes. Common events in the evolution of HLA genes and pseudogenes. J Immunol 149:1947–56

    CAS  PubMed  Google Scholar 

  • Gherardin NA, Keller AN, Woolley RE, Le Nours J, Ritchie DS, Neeson PJ, Birkinshaw RW, Eckle SB, Waddington JN, Liu L, Fairlie DP, Uldrich AP, Pellicci DG, McCluskey J, Godfrey DI, Rossjohn J (2016) Diversity of T cells restricted by the MHC class I-related molecule MR1 facilitates differential antigen recognition. Immunity 44:32–45

    Article  CAS  PubMed  Google Scholar 

  • Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YY, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM (2010) Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8:e1000407

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold MC, Eid T, Smyk-Pearson S, Eberling Y, Swarbrick GM, Langley SM, Streeter PR, Lewinsohn DA, Lewinsohn DM (2013) Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol 6:35–44

    Article  CAS  PubMed  Google Scholar 

  • Gold MC, McLaren JE, Reistetter JA, Smyk-Pearson S, Ladell K, Swarbrick GM, Yu YY, Hansen TH, Lund O, Nielsen M, Gerritsen B, Kesmir C, Miles JJ, Lewinsohn DA, Price DA, Lewinsohn DM (2014) MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. J Exp Med 211:1601–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldfinch N, Reinink P, Connelley T, Koets A, Morrison I, Van Rhijn I (2010) Conservation of mucosal associated invariant T (MAIT) cells and the MR1 restriction element in ruminants, and abundance of MAIT cells in spleen. Vet Res 41:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen TH, Huang S, Arnold PL, Fremont DH (2007) Patterns of nonclassical MHC antigen presentation. Nat Immunol 8:563–8

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Hirai M, Kurosawa Y (1995) A gene outside the human MHC related to classical HLA class I genes. Science 269:693–5

    Article  CAS  PubMed  Google Scholar 

  • Howson LJ, Salio M, Cerundolo V (2015) MR1-restricted mucosal-associated invariant T cells and their activation during infectious diseases. Front Immunol 6:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Gilfillan S, Cella M, Miley MJ, Lantz O, Lybarger L, Fremont DH, Hansen TH (2005) Evidence for MR1 antigen presentation to mucosal-associated invariant T cells. J Biol Chem 280:21183–93

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Gilfillan S, Kim S, Thompson B, Wang X, Sant AJ, Fremont DH, Lantz O, Hansen TH (2008) MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells. J Exp Med 205:1201–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Martin E, Kim S, Yu L, Soudais C, Fremont DH, Lantz O, Hansen TH (2009) MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. Proc Natl Acad Sci U S A 106:8290–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes AL, Ota T, Nei M (1990) Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Mol Biol Evol 7:515–24

    CAS  PubMed  Google Scholar 

  • Huppa JB, Axmann M, Mortelmaier MA, Lillemeier BF, Newell EW, Brameshuber M, Klein LO, Schutz GJ, Davis MM (2010) TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463:963–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayawardena-Wolf J, Benlagha K, Chiu YH, Mehr R, Bendelac A (2001) CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15:897–908

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–82

    CAS  PubMed  Google Scholar 

  • Kawachi I, Maldonado J, Strader C, Gilfillan S (2006) MR1-restricted V alpha 19i mucosal-associated invariant T cells are innate T cells in the gut lamina propria that provide a rapid and diverse cytokine response. J Immunol 176:1618–27

    Article  CAS  PubMed  Google Scholar 

  • Kjer-Nielsen L, Borg NA, Pellicci DG, Beddoe T, Kostenko L, Clements CS, Williamson NA, Smyth MJ, Besra GS, Reid HH, Bharadwaj M, Godfrey DI, Rossjohn J, McCluskey J (2006) A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition. J Exp Med 203:661–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491:717–23

    CAS  PubMed  Google Scholar 

  • Klein J, Sato A, O’HUigin C (1998) Evolution by gene duplication in the major histocompatibility complex. Cytogenet Cell Genet 80:123–7

    Article  CAS  PubMed  Google Scholar 

  • Kreslavsky T, Gleimer M, Miyazaki M, Choi Y, Gagnon E, Murre C, Sicinski P, von Boehmer H (2012) beta-Selection-induced proliferation is required for alphabeta T cell differentiation. Immunity 37:840–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–4

  • Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, Core M, Sleurs D, Serriari NE, Treiner E, Hivroz C, Sansonetti P, Gougeon ML, Soudais C, Lantz O (2013a) MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog 9:e1003681

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N, Core M, Levy E, Dusseaux M, Meyssonnier V, Premel V, Ngo C, Riteau B, Duban L, Robert D, Huang S, Rottman M, Soudais C, Lantz O (2010) Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 11:701–8

    Article  PubMed  Google Scholar 

  • Le Bourhis L, Mburu YK, Lantz O (2013b) MAIT cells, surveyors of a new class of antigen: development and functions. Curr Opin Immunol 25:174–80

    Article  PubMed  Google Scholar 

  • LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24:160–8

    Article  CAS  PubMed  Google Scholar 

  • Lebron JA, Bennett MJ, Vaughn DE, Chirino AJ, Snow PM, Mintier GA, Feder JN, Bjorkman PJ (1998) Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell 93:111–23

    Article  CAS  PubMed  Google Scholar 

  • Lepore M, Kalinichenko A, Colone A, Paleja B, Singhal A, Tschumi A, Lee B, Poidinger M, Zolezzi F, Quagliata L, Sander P, Newell E, Bertoletti A, Terracciano L, De Libero G, Mori L (2014) Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRbeta repertoire. Nat Commun 5:3866

    PubMed  Google Scholar 

  • Lion J, Debuysscher V, Wlodarczyk A, Hodroge A, Serriari NE, Choteau L, Ouled-haddou H, Plistat M, Lassoued K, Lantz O, Treiner E (2013) MR1B, a natural spliced isoform of the MHC-related 1 protein, is expressed as homodimers at the cell surface and activates MAIT cells. Eur J Immunol 43:1363–73

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Sagaseta J, Dulberger CL, Crooks JE, Parks CD, Luoma AM, McFedries A, Van Rhijn I, Saghatelian A, Adams EJ (2013a) The molecular basis for mucosal-associated invariant T cell recognition of MR1 proteins. Proc Natl Acad Sci USA 110:E1771–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Sagaseta J, Dulberger CL, McFedries A, Cushman M, Saghatelian A, Adams EJ (2013b) MAIT recognition of a stimulatory bacterial antigen bound to MR1. J Immunol 191:5268–77

    Article  CAS  PubMed  Google Scholar 

  • Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, Premel V, Devys A, Moura IC, Tilloy F, Cherif S, Vera G, Latour S, Soudais C, Lantz O (2009) Stepwise development of MAIT cells in mouse and human. PLoS Biol 7:e54

    Article  PubMed  Google Scholar 

  • McWilliam HE, Eckle SB, Theodossis A, Liu L, Chen Z, Wubben JM, Fairlie DP, Strugnell RA, Mintern JD, McCluskey J, Rossjohn J, Villadangos JA (2016) The intracellular pathway for the presentation of vitamin B-related antigens by the antigen-presenting molecule MR1. Nat Immunol 17:531–7

  • Miley MJ, Truscott SM, Yu YYL, Gilfillan S, Fremont DH, Hansen TH, Lybarger L (2003) Biochemical features of the MHC-related protein 1 consistent with an immunological function. J Immunol 170:6090–6098

    Article  CAS  PubMed  Google Scholar 

  • Mohan JF, Unanue ER (2012) Unconventional recognition of peptides by T cells and the implications for autoimmunity. Nat Rev Immunol 12:721–8

    Article  CAS  PubMed  Google Scholar 

  • Mori L, Lepore M, De Libero G (2016) The immunology of CD1- and MR1-restricted T cells. Annu Rev Immunol 34:479–510

  • Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11:823–36

    CAS  PubMed  Google Scholar 

  • Patel O, Kjer-Nielsen L, Le Nours J, Eckle SB, Birkinshaw R, Beddoe T, Corbett AJ, Liu L, Miles JJ, Meehan B, Reantragoon R, Sandoval-Romero ML, Sullivan LC, Brooks AG, Chen Z, Fairlie DP, McCluskey J, Rossjohn J (2013) Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun 4:2142

    PubMed  Google Scholar 

  • Rahimpour A, Koay HF, Enders A, Clanchy R, Eckle SB, Meehan B, Chen Z, Whittle B, Liu L, Fairlie DP, Goodnow CC, McCluskey J, Rossjohn J, Uldrich AP, Pellicci DG, Godfrey DI (2015) Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J Exp Med 212:1095–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB, Chen Z, Eckle SB, Uldrich AP, Birkinshaw RW, Patel O, Kostenko L, Meehan B, Kedzierska K, Liu L, Fairlie DP, Hansen TH, Godfrey DI, Rossjohn J, McCluskey J, Kjer-Nielsen L (2013) Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med 210:2305–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reantragoon R, Kjer-Nielsen L, Patel O, Chen Z, Illing PT, Bhati M, Kostenko L, Bharadwaj M, Meehan B, Hansen TH, Godfrey DI, Rossjohn J, McCluskey J (2012) Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor. J Exp Med 209:761–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riegert P, Wanner V, Bahram S (1998) Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene. J Immunol 161:4066–77

    CAS  PubMed  Google Scholar 

  • Rodgers JR, Cook RG (2005) MHC class Ib molecules bridge innate and acquired immunity. Nat Rev Immunol 5:459–71

    Article  CAS  PubMed  Google Scholar 

  • Salerno-Goncalves R, Rezwan T, Sztein MB (2014) B cells modulate mucosal associated invariant T cell immune responses. Front Immunol 4:511

    Article  PubMed  PubMed Central  Google Scholar 

  • Schatz DG (2004) Antigen receptor genes and the evolution of a recombinase. Semin Immunol 16:245–56

    Article  CAS  PubMed  Google Scholar 

  • Schatz DG, Ji Y (2011) Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 11:251–63

    Article  CAS  PubMed  Google Scholar 

  • Seach N, Guerri L, Le Bourhis L, Mburu Y, Cui Y, Bessoles S, Soudais C, Lantz O (2013) Double-positive thymocytes select mucosal-associated invariant T cells. J Immunol 191:6002–9

    Article  CAS  PubMed  Google Scholar 

  • Shawar SM, Vyas JM, Rodgers JR, Rich RR (1994) Antigen presentation by major histocompatibility complex class I-B molecules. Annu Rev Immunol 12:839–80

    Article  CAS  PubMed  Google Scholar 

  • Shiina T, Ando A, Suto Y, Kasai F, Shigenari A, Takishima N, Kikkawa E, Iwata K, Kuwano Y, Kitamura Y, Matsuzawa Y, Sano K, Nogami M, Kawata H, Li S, Fukuzumi Y, Yamazaki M, Tashiro H, Tamiya G, Kohda A, Okumura K, Ikemura T, Soeda E, Mizuki N, Kimura M, Bahram S, Inoko H (2001) Genomic anatomy of a premier major histocompatibility complex paralogous region on chromosome 1q21-q22. Genome Res 11:789–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreejit G, Ahmed A, Parveen N, Jha V, Valluri VL, Ghosh S, Mukhopadhyay S (2014) The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta-2-microglobulin (beta2M) affecting antigen presentation function of macrophage. PLoS Pathog 10:e1004446

    Article  PubMed  PubMed Central  Google Scholar 

  • Stroynowski I (1990) Molecules related to class-I major histocompatibility complex antigens. Annu Rev Immunol 8:501–30

    Article  CAS  PubMed  Google Scholar 

  • Stroynowski I, Lindahl KF (1994) Antigen presentation by non-classical class I molecules. Curr Opin Immunol 6:38–44

    Article  CAS  PubMed  Google Scholar 

  • Stuart LM, Ezekowitz RA (2005) Phagocytosis: elegant complexity. Immunity 22:539–50

    Article  CAS  PubMed  Google Scholar 

  • Takada T, Kumanovics A, Amadou C, Yoshino M, Jones EP, Athanasiou M, Evans GA, Fischer Lindahl K (2003) Species-specific class I gene expansions formed the telomeric 1 mb of the mouse major histocompatibility complex. Genome Res 13:589–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang XZ, Jo J, Tan AT, Sandalova E, Chia A, Tan KC, Lee KH, Gehring AJ, De Libero G, Bertoletti A (2013) IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J Immunol 190:3142–52

    Article  CAS  PubMed  Google Scholar 

  • Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, de la Salle H, Bendelac A, Bonneville M, Lantz O (1999) An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med 189:1907–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164–9

    Article  CAS  PubMed  Google Scholar 

  • Trowsdale J (1995) “Both man & bird & beast”: comparative organization of MHC genes. Immunogenetics 41:1–17

    Article  CAS  PubMed  Google Scholar 

  • Trowsdale J, Knight JC (2013) Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet 14:301–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto K, Deakin JE, Graves JA, Hashimoto K (2013) Exceptionally high conservation of the MHC class I-related gene, MR1, among mammals. Immunogenetics 65:115–24

    Article  CAS  PubMed  Google Scholar 

  • Walter L, Gunther E (1998) Isolation and molecular characterization of the rat MR1 homologue, a non-MHC-linked class I-related gene. Immunogenetics 47:477–82

    Article  CAS  PubMed  Google Scholar 

  • Wun KS, Borg NA, Kjer-Nielsen L, Beddoe T, Koh R, Richardson SK, Thakur M, Howell AR, Scott-Browne JP, Gapin L, Godfrey DI, McCluskey J, Rossjohn J (2008) A minimal binding footprint on CD1d-glycolipid is a basis for selection of the unique human NKT TCR. J Exp Med 205:939–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Hirai M, Kurosawa Y, Hashimoto K (1997) A highly conserved major histocompatibility complex class I-related gene in mammals. Biochem Biophys Res Commun 238:697–702

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Tsukamoto K, Hashimoto K (2014) Cell surface expression of MR1B, a splice variant of the MHC class I-related molecule MR1, revealed with antibodies. Biochem Biophys Res Commun 443:422–7

    Article  CAS  PubMed  Google Scholar 

  • Young MH, U’Ren L, Huang S, Mallevaey T, Scott-Browne J, Crawford F, Lantz O, Hansen TH, Kappler J, Marrack P, Gapin L (2013) MAIT cell recognition of MR1 on bacterially infected and uninfected cells. PLoS One 8:e53789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in the Gapin’s laboratory is supported by National Institute of Health grant (AI103736). We would like to acknowledge current and past members of the laboratory for discussions and Drs. Jennifer Matsuda and Manfred Brigl for critical reading of the manuscript. We apologize to colleagues whose works were not cited due to space constraints or omission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Gapin.

Additional information

This article is published in the Special Issue CD1, MR1, NKT, and MAIT: Evolution and Origins of Non-peptidic Antigen Recognition by T lymphocytes with Guest Editor Dr. Dirk Zajonc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krovi, S.H., Gapin, L. Structure and function of the non-classical major histocompatibility complex molecule MR1. Immunogenetics 68, 549–559 (2016). https://doi.org/10.1007/s00251-016-0939-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-016-0939-5

Keywords

Navigation