Skip to main content

Advertisement

Log in

The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities

  • Review
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells affect a form of innate immunity that recognizes and eliminates cells that are infected with certain viruses or have undergone malignant transformation. In mammals, this recognition can be mediated through immunoglobulin- (Ig) and/or lectin-type NK receptors (NKRs). NKR genes in mammals range from minimally polymorphic single-copy genes to complex multigene families that exhibit high levels of haplotypic complexity and exhibit significant interspecific variation. Certain single-copy NKR genes that are present in one mammal are present as expanded multigene families in other mammals. These observations highlight NKRs as one of the most rapidly evolving eukaryotic gene families and likely reflect the influence of pathogens, especially viruses, on their evolution. Although well characterized in human and mice, cytotoxic cells that are functionally similar to NK cells have been identified in species ranging from birds to reptiles, amphibians and fish. Although numerous receptors have been identified in non-mammalian vertebrates that share structural relationships with mammalian NKRs, functionally defining these lower vertebrate molecules as NKRs is confounded by methodological and interpretive complexities. Nevertheless, several lines of evidence suggest that NK-type function or its equivalent has sustained a long evolutionary history throughout vertebrate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arnason U, Adegoke JA, Gullberg A, Harley EH, Janke A, Kullberg M (2008) Mitogenomic relationships of placental mammals and molecular estimates of their divergences. Gene 421:37–51

    Article  CAS  PubMed  Google Scholar 

  • Arnon TI, Kaiser JT, West AP Jr, Olson R, Diskin R, Viertlboeck BC, Gobel TW, Bjorkman PJ (2008) The crystal structure of CHIR-AB1: a primordial avian classical Fc receptor. J Mol Biol 381:1012–1024

    Article  CAS  PubMed  Google Scholar 

  • Averdam A, Petersen B, Rosner C, Neff J, Roos C, Eberle M, Aujard F, Munch C, Schempp W, Carrington M, Shiina T, Inoko H, Knaust F, Coggill P, Sehra H, Beck S, Abi-Rached L, Reinhardt R, Walter L (2009) A novel system of polymorphic and diverse NK cell receptors in primates. PLoS Genet 5:e1000688

    Article  PubMed  CAS  Google Scholar 

  • Barrow AD, Trowsdale J (2008) The extended human leukocyte receptor complex: diverse ways of modulating immune responses. Immunol Rev 224:98–123

    Article  CAS  PubMed  Google Scholar 

  • Belov K, Sanderson CE, Deakin JE, Wong ES, Assange D, McColl KA, Gout A, de BB B, AD STP, Trowsdale J, Papenfuss AT (2007) Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Res 17:982–991

    Article  CAS  PubMed  Google Scholar 

  • Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Ann Rev Immunol 25:297–336

    Article  CAS  Google Scholar 

  • Bernot A, Zoorob R, Auffray C (1994) Linkage of a new member of the lectin supergene family to chicken Mhc genes. Immunogenetics 39:221–229

    Article  CAS  PubMed  Google Scholar 

  • Biassoni R (2009) Human natural killer receptors, co-receptors, and their ligands. Curr Protoc. Immunol Chapter 14:Unit 14.10

  • Biassoni R, Cantoni C, Pende D, Sivori S, Parolini S, Vitale M, Bottino C, Moretta A (2001) Human natural killer cell receptors and co-receptors. Immunol Rev 181:203–214

    Article  CAS  PubMed  Google Scholar 

  • Bimber BN, Moreland AJ, Wiseman RW, Hughes AL, O’Connor DH (2008) Complete characterization of killer Ig-like receptor (KIR) haplotypes in Mauritian cynomolgus macaques: novel insights into nonhuman primate KIR gene content and organization. J Immunol 181:6301–6308

    CAS  PubMed  Google Scholar 

  • Blair JE, Hedges SB (2005) Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 22:2275–2284

    Article  CAS  PubMed  Google Scholar 

  • Borrego F, Masilamani M, Marusina AI, Tang X, Coligan JE (2006) The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res 35:263–278

    Article  CAS  PubMed  Google Scholar 

  • Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, Haldeman B, Ostrander CD, Kaifu T, Chabannon C, Moretta A, West R, Xu W, Vivier E, Levin SD (2009) The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 206:1495–1503

    Article  CAS  PubMed  Google Scholar 

  • Call ME, Wucherpfennig KW (2007) Common themes in the assembly and architecture of activating immune receptors. Nat Rev Immunol 7:841–850

    Article  CAS  PubMed  Google Scholar 

  • Cannon JP, Haire RN, Mueller MG, Litman RT, Eason DD, Tinnemore D, Amemiya CT, Ota T, Litman GW (2006) Ancient divergence of a complex family of immune-type receptor genes. Immunogenet 58:362–373

    Article  CAS  Google Scholar 

  • Cannon JP, Haire RN, Magis AT, Eason DD, Winfrey KN, Hernandez Prada JA, Bailey KM, Jakoncic J, Litman GW, Ostrov DA (2008) A bony fish immunological receptor of the NITR multigene family mediates allogeneic recognition. Immunity 29:228–237

    Article  CAS  PubMed  Google Scholar 

  • Cannon JP, Dishaw LJ, Haire RN, Litman RT, Ostrov DA, Litman GW (2010) Recognition of additional roles for immunoglobulin domains in immune function. Semin Immunol 22:17–24

    Article  CAS  PubMed  Google Scholar 

  • Carlyle JR, Mesci A, Fine JH, Chen P, Belanger S, Tai LH, Makrigiannis AP (2008) Evolution of the Ly49 and Nkrp1 recognition systems. Semin Immunol 20:321–330

    Article  CAS  PubMed  Google Scholar 

  • Chiang HI, Zhou H, Raudsepp T, Jesudhasan PR, Zhu JJ (2007) Chicken CD69 and CD94/NKG2-like genes in a chromosomal region syntenic to mammalian natural killer gene complex. Immunogenetics 59:603–611

    Article  CAS  PubMed  Google Scholar 

  • Dennis GJ, Kubagawa H, Cooper MD (2000) Paired Ig-like receptor homologs in birds and mammals share a common ancestor with mammalian Fc receptors. Proc Natl Acad Sci USA 97:13245–13250

    Article  CAS  PubMed  Google Scholar 

  • Desai S, Heffelfinger AK, Orcutt TM, Litman GW, Yoder JA (2008) The medaka novel immune-type receptor (NITR) gene clusters reveal an extraordinary degree of divergence in variable domains. Evol Biol 8:177–188

    Article  CAS  Google Scholar 

  • Djeu JY, Jiang K, Wei S (2002) A view to a kill: signals triggering cytotoxicity. Clin Cancer Res 8:636–640

    CAS  PubMed  Google Scholar 

  • Du PL, Zucchetti I, De SR (2004) Immunoglobulin superfamily receptors in protochordates: before RAG time. Immunol Rev 198:233–248

    Article  Google Scholar 

  • Evans DL, Graves SS, Cobb D, Dawe DL (1984) Nonspecific cytotoxic cells in fish (Ictalurus punctatus). II. Parameters of target cell lysis and specificity. Dev Comp Immunol 8:303–312

    Article  CAS  PubMed  Google Scholar 

  • Evenhuis J, Bengten E, Snell C, Quiniou SM, Miller NW, Wilson M (2007) Characterization of additional novel immune type receptors in channel catfish, Ictalurus punctatus. Immunogenetics 59:661–671

    Article  CAS  PubMed  Google Scholar 

  • Ferraresso S, Kuhl H, Milan M, Ritchie DW, Secombes CJ, Reinhardt R, Bargelloni L (2009) Identification and characterisation of a novel immune-type receptor (NITR) gene cluster in the European sea bass, Dicentrarchus labrax, reveals recurrent gene expansion and diversification by positive selection. Immunogenetics 61:773–788

    Article  CAS  PubMed  Google Scholar 

  • Fischer U, Utke K, Somamoto T, Kollner B, Ototake M, Nakanishi T (2006) Cytotoxic activities of fish leucocytes. Fish Shellfish Immunol 20:209–226

    Article  CAS  PubMed  Google Scholar 

  • Flajnik MF (2002) Comparative analyses of immunoglobulin genes: surprises and portents. Nat Rev Immunol 2:688–698

    Article  CAS  PubMed  Google Scholar 

  • Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:47–59

    Article  CAS  PubMed  Google Scholar 

  • Gagnier L, Wilhelm BT, Mager DL (2003) Ly49 genes in non-rodent mammals. Immunogenetics 55:109–115

    CAS  PubMed  Google Scholar 

  • Gendzekhadze K, Norman PJ, Abi-Rached L, Graef T, Moesta AK, Layrisse Z, Parham P (2009) Co-evolution of KIR2DL3 with HLA-C in a human population retaining minimal essential diversity of KIR and HLA class I ligands. Proc Natl Acad Sci U S A 106:18692–18697

    Article  CAS  PubMed  Google Scholar 

  • Glazko GV, Nei M (2003) Estimation of divergence times for major lineages of primate species. Mol Biol Evol 20:424–434

    Article  CAS  PubMed  Google Scholar 

  • Gobel TW, Chen CL, Shrimpf J, Grossi CE, Bernot A, Bucy RP, Auffray C, Cooper MD (1994) Characterization of avian natural killer cells and their intracellular CD3 protein complex. Eur J Immunol 24:1685–1691

    Article  CAS  PubMed  Google Scholar 

  • Goyos A, Robert J (2009) Tumorigenesis and anti-tumor immune responses in Xenopus. Front Biosci 14:167–176

    Article  CAS  PubMed  Google Scholar 

  • Guethlein LA, Abi-Rached L, Hammond JA, Parham P (2007) The expanded cattle KIR genes are orthologous to the conserved single-copy KIR3DX1 gene of primates. Immunogenetics 59:517–522

    Article  CAS  PubMed  Google Scholar 

  • Guselnikov SV, Reshetnikova ES, Najakshin AM, Mechetina LV, Robert J, Av T (2010) The amphibians Xenopus laevis and Silurana tropicalis possess a family of activating KIR-related Immunoglobulin-like receptors. Dev Comp Immunol 34:308–315

    Article  CAS  PubMed  Google Scholar 

  • Hammond JA, Guethlein LA, Abi-Rached L, Moesta AK, Parham P (2009) Evolution and survival of marine carnivores did not require a diversity of killer cell Ig-like receptors or Ly49 NK cell receptors. J Immunol 182:3618–3627

    Article  CAS  PubMed  Google Scholar 

  • Hao L, Klein J, Nei M (2006) Heterogeneous but conserved natural killer receptor gene complexes in four major orders of mammals. Proc Natl Acad Sci U S A 103:3192–3197

    Article  CAS  PubMed  Google Scholar 

  • Hawke NA, Yoder JA, Haire RN, Mueller MG, Litman RT, Miracle AL, Stuge T, Shen L, Miller N, Litman GW (2001) Extraordinary variation in a diversified family of immune-type receptor genes. Proc Natl Acad Sci USA 98:13832–13837

    Article  CAS  PubMed  Google Scholar 

  • Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633–636

    Article  CAS  PubMed  Google Scholar 

  • Hollenbach JA, Meenagh A, Sleator C, Alaez C, Bengoche M, Canossi A, Contreras G, Creary L, Evseeva I, Gorodezky C, Hardie RA, Hemming KT, Lie B, Luo M, Martinetti M, Navarette C, de Oliveira DC, Ozzella G, Pasi A, Pavlova E, Pinto S, Porto LC, Santos P, Slavcev A, Srinak D, Tavoularis S, Tonks S, Trachtenberg E, Vejbaesya S, Middleton D (2010) Report from the killer immunoglobulin-like receptor (KIR) anthropology component of the 15th International Histocompatibility Workshop: worldwide variation in the KIR loci and further evidence for the co-evolution of KIR and HLA. Tissue Antigens 76:9–17

    CAS  PubMed  Google Scholar 

  • Horton TL, Ritchie P, Watson MD, Horton JD (1996) NK-like activity against allogeneic tumour cells demonstrated in the spleen of control and thymectomized Xenopus. Immunol Cell Biol 74:365–373

    Article  CAS  PubMed  Google Scholar 

  • Horton TL, Minter R, Stewart R, Ritchie P, Watson MD, Horton JD (2000) Xenopus NK cells identified by novel monoclonal antibodies. Eur J Immunol 30:604–613

    Article  CAS  PubMed  Google Scholar 

  • Horton TL, Stewart R, Cohen N, Rau L, Ritchie P, Watson MD, Robert J, Horton JD (2003) Ontogeny of Xenopus NK cells in the absence of MHC class I antigens. Dev Comp Immunol 27:715–726

    Article  CAS  PubMed  Google Scholar 

  • Hosomichi K, Shiina T, Suzuki S, Tanaka M, Shimizu S, Iwamoto S, Hara H, Yoshida Y, Kulski JK, Inoko H, Hanzawa K (2006) The major histocompatibility complex (MHC) class IIB region has greater genomic structural flexibility and diversity in the quail than the chicken. BMC Genomics 7:322

    Article  PubMed  CAS  Google Scholar 

  • Jima DD, Shah RN, Orcutt TM, Joshi D, Law JM, Litman GW, Trede NS, Yoder JA (2009) Enhanced transcription of complement and coagulation genes in the absence of adaptive immunity. Mol Immunol 46:1505–1516

    Article  CAS  PubMed  Google Scholar 

  • Kaufman J, Milne S, Gobel TWF, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925

    Article  CAS  PubMed  Google Scholar 

  • Khalturin K, Becker M, Rinkevich B, Bosch TCG (2003) Urochordates and the origin of natural killer cells: identification of a CD94/NKR-P1-related receptor in blood cells of Botryllus. Proc Natl Acad Sci USA 100:622–627

    Article  CAS  PubMed  Google Scholar 

  • Khalturin K, Panzer Z, Cooper MD, Bosch TC (2004) Recognition strategies in the innate immune system of ancestral chordates. Mol Immunol 41:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Kikuno R, Sato A, Mayer WE, Shintani S, Aoki T, Klein J (2004) Clustering of C-type lectin natural killer receptor-like loci in the bony fish Oreochromis niloticus. Scand J Immunol 59:133–142

    Article  CAS  PubMed  Google Scholar 

  • Kock H, Fischer U (2008) A novel immunoglobulin-like transcript from rainbow trout with two Ig-like domains and two isoforms. Mol Immunol 45:1612–1622

    Article  CAS  PubMed  Google Scholar 

  • Kulski JK, Shiina T, Anzai T, Kohara S, Inoko H (2002) Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190:95–122

    Article  CAS  PubMed  Google Scholar 

  • Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  CAS  PubMed  Google Scholar 

  • Laun K, Coggill P, Palmer S, Sims S, Ning Z, Ragoussis J, Volpi E, Wilson N, Beck S, Ziegler A, Volz A (2006) The leukocyte receptor complex in chicken is characterized by massive expansion and diversification of immunoglobulin-like Loci. PLoS Genet 2:e73

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Zhang H, Beck G (2001) Phylogeny of natural cytotoxicity: cytotoxic activity of coelomocytes of the purple sea urchin, Arbacia punctulata. J Exp Zool 290:741–750

    Article  CAS  PubMed  Google Scholar 

  • Litman GW, Dishaw LJ, Cannon JP, Haire RN, Rast JP (2007) Alternative mechanisms of immune receptor diversity. Curr Opin Biol 19:526–534

    CAS  Google Scholar 

  • Lochner KM, Viertlboeck BC, Gobel TW (2010) The red jungle fowl leukocyte receptor complex contains a large, highly diverse number of chicken immunoglobulin-like receptor (CHIR) genes. Mol Immunol 47:1956–1962

    Article  CAS  PubMed  Google Scholar 

  • Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409:1055–1059

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Borra J, Khakoo SI (2008) Speed and selection in the evolution of killer-cell immunoglobulin-like receptors. Int J Immunogenet 35:89–96

    Article  CAS  PubMed  Google Scholar 

  • Mewes J, Verheijen K, Montgomery BC, Stafford JL (2009) Stimulatory catfish leukocyte immune-type receptors (IpLITRs) demonstrate a unique ability to associate with adaptor signaling proteins and participate in the formation of homo- and heterodimers. Mol Immunol 47:318–331

    Article  CAS  PubMed  Google Scholar 

  • Miller RD (2010) Those other mammals: the immunoglobulins and T cell receptors of marsupials and monotremes. Semin Immunol 22:3–9

    Article  CAS  PubMed  Google Scholar 

  • Montgomery BC, Mewes J, Davidson C, Burshtyn DN, Stafford JL (2008) Cell surface expression of channel catfish leukocyte immune-type receptors (IpLITRs) and recruitment of both Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 and SHP-2. Dev Comp Immunol 33:570–582

    Article  PubMed  CAS  Google Scholar 

  • Moss LD, Monette MM, Jaso-Friedmann L, Leary JH III, Dougan ST, Krunkosky T, Evans DL (2009) Identification of phagocytic cells, NK-like cytotoxic cell activity and the production of cellular exudates in the coelomic cavity of adult zebrafish. Dev Comp Immunol 33:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Nikolaidis N, Makalowska I, Chalkia D, Makalowski W, Klein J (2005) Origin and evolution of the chicken leukocyte receptor complex. Proc Natl Acad Sci USA 102:4057–4062

    Article  CAS  PubMed  Google Scholar 

  • Norman PJ, Abi-Rached L, Gendzekhadze K, Korbel D, Gleimer M, Rowley D, Bruno D, Carrington CV, Chandanayingyong D, Chang YH, Crespi C, Saruhan-Direskeneli G, Fraser PA, Hameed K, Kamkamidze G, Koram KA, Layrisse Z, Matamoros N, Mila J, Park MH, Pitchappan RM, Ramdath DD, Shiau MY, Stephens HA, Struik S, Verity DH, Vaughan RW, Tyan D, Davis RW, Riley EM, Ronaghi M, Parham P (2007) Unusual selection on the KIR3DL1/S1 natural killer cell receptor in Africans. Nat Genet 39:1092–1099

    Article  CAS  PubMed  Google Scholar 

  • Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF (2006) Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol 176:3674–3685

    CAS  PubMed  Google Scholar 

  • Orr MT, Lanier LL (2010) Natural killer cell education and tolerance. Cell 142:847–856

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard AE, Martin SA, Wang T, Stet RJ, Secombes CJ (2009) Rainbow trout (Oncorhynchus mykiss) possess multiple novel immunoglobulin-like transcripts containing either an ITAM or ITIMs. Dev Comp Immunol 33:525–532

    Article  CAS  PubMed  Google Scholar 

  • Ota T, Sitnikova T, Nei M (2000) Evolution of vertebrate immunoglobulin variable gene segments. Curr Top Microbiol Immunol 248:221–245

    CAS  PubMed  Google Scholar 

  • Panagos PG, Dobrinski KP, Chen X, Grant AW, Traver D, Djeu JY, Wei S, Yoder JA (2008) Immune-related, lectin-like receptors are differentially expressed in the myeloid and lymphoid lineages of zebrafish. Immunogenet 58:31–40

    Article  CAS  Google Scholar 

  • Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5:201–214

    Article  CAS  PubMed  Google Scholar 

  • Parham P, Abi-Rached L, Matevosyan L, Moesta AK, Norman PJ, Older Aguilar AM, Guethlein LA (2010) Primate-specific regulation of natural killer cells. J Med Primatol 39:194–212

    Article  CAS  PubMed  Google Scholar 

  • Parrinello N, Arizza V, Cammarata M, Parrinello DM (1993) Cytotoxic activity of Ciona intestinalis (Tunicata) hemocytes: properties of the in vitro reaction against erythrocyte targets. Dev Comp Immunol 17:19–27

    Article  CAS  PubMed  Google Scholar 

  • Pitcher LA, van Oers NS (2003) T-cell receptor signal transmission: who gives an ITAM? Trends Immunol 24:554–560

    Article  CAS  PubMed  Google Scholar 

  • Rast JP, Haire RN, Litman RT, Pross S, Litman GW (1995) Identification and characterization of T-cell antigen receptor related genes in phylogenetically diverse vertebrate species. Immunogenet 42:204–212

    Article  CAS  Google Scholar 

  • Rau L, Gantress J, Bell A, Stewart R, Horton T, Cohen N, Horton J, Robert J (2002) Identification and characterization of Xenopus CD8+ T cells expressing an NK cell-associated molecule. Eur J Immunol 32:1574–1583

    Article  CAS  PubMed  Google Scholar 

  • Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89

    Article  CAS  PubMed  Google Scholar 

  • Robert J, Ohta Y (2009) Comparative and developmental study of the immune system in Xenopus. Dev Dyn 238:1249–1270

    Article  CAS  PubMed  Google Scholar 

  • Rogers S, Shaw I, Ross N, Nair V, Rothwell L, Kaufman J, Kaiser P (2003) Analysis of part of the chicken Rfp-Y region reveals two novel lectin genes, the first complete genomic sequence of a class I alpha-chain gene, a truncated class II beta-chain gene, and a large CR1 repeat. Immunogenetics 55:100–108

    CAS  PubMed  Google Scholar 

  • Rogers SL, Gobel TW, Viertlboeck BC, Milne S, Beck S, Kaufman J (2005) Characterization of the chicken C-type lectin-like receptors B-NK and B-lec suggests that the NK complex and the MHC share a common ancestral region. J Immunol 174:3475–3483

    CAS  PubMed  Google Scholar 

  • Rogers SL, Viertlboeck BC, Gobel TW, Kaufman J (2008) Avian NK activities, cells and receptors. Semin Immunol 20:353–360

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Mayer WE, Overath P, Klein J (2003) Genes encoding putative natural killer cell C-type lectin receptors in teleostean fishes. Proc Natl Acad Sci USA 100:7779–7784

    Article  CAS  PubMed  Google Scholar 

  • Sepulcre MP, Alcaraz-Perez F, Lopez-Munoz A, Roca FJ, Meseguer J, Cayuela ML, Mulero V (2009) Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NF-kappaB activation. J Immunol 182:1836–1845

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Stuge TB, Zhou H, Khayat M, Barker KS, Quiniou SMA, Wilson M, Bengten E, Chinchar VG, Clem LW, Miller NW (2002) Channel catfish cytotoxic cells: a mini-review. Dev Comp Immunol 26:141–149

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Stuge TB, Bengten E, Wilson M, Chinchar VG, Naftel JP, Bernanke JM, Clem LW, Miller NW (2004) Identification and characterization of clonal NK-like cells from channel catfish (Ictalurus punctatus). Dev Comp Immunol 28:139–152

    Article  CAS  PubMed  Google Scholar 

  • Sivori S, Falco M, Moretta L, Moretta A (2010) Extending killer Ig-like receptor function: from HLA class I recognition to sensors of microbial products. Trends Immunol 31:289–294

    Article  CAS  PubMed  Google Scholar 

  • Soanes KH, Figuereido K, Richards RC, Mattatall NR, Ewart KV (2004) Sequence and expression of C-type lectin receptors in Atlantic salmon (Salmo salar). Immunogenet 56:572–584

    Article  CAS  Google Scholar 

  • Soanes KH, Ewart KV, Mattatall NR (2008) Recombinant production and characterization of the carbohydrate recognition domain from Atlantic salmon C-type lectin receptor C (SCLRC). Protein Expr Purif 59:38–46

    Article  CAS  PubMed  Google Scholar 

  • Somamoto T, Sato A, Nakanishi T, Ototake M, Okamoto N (2004) Specific cytotoxic activity generated by mixed leucocyte culture in ginbuna crucian carp. Fish Shellfish Immunol 17:187–191

    Article  CAS  PubMed  Google Scholar 

  • Stafford JL, Bengten E, Du Pasquier L, McIntosh RD, Quiniou SM, Clem LW, Miller NW, Wilson M (2006) A novel family of diversified immunoregulatory receptors in teleosts is homologous to both mammalian Fc receptors and molecules encoded within the leukocyte receptor complex. Immunogenet 58:758–773

    Article  CAS  Google Scholar 

  • Stafford JL, Bengten E, Du PL, Miller NW, Wilson M (2007) Channel catfish leukocyte immune-type receptors contain a putative MHC class I binding site. Immunogenet 59:77–91

    Article  CAS  Google Scholar 

  • Stet RJM, Hermsen T, Westphal AH, Jukes J, Engelsma M, Verburg-van Kemenade BML, Dortmans J, Aveiro J, Savelkoul HFJ (2005) Novel immunoglobulin-like transcripts in teleost fish encode polymorphic receptors with cytoplasmic ITAM and ITIM and a new structural Ig domain similar to the natural cytotoxicity receptor NKp44. Immunogenet 57:77–89

    Article  CAS  Google Scholar 

  • Strong SJ, Mueller MG, Litman RT, Hawke NA, Haire RN, Miracle AL, Rast JP, Amemiya CT, Litman GW (1999) A novel multigene family encodes diversified variable regions. Proc Natl Acad Sci USA 96:15080–15085

    Article  CAS  PubMed  Google Scholar 

  • Stuge TB, Yoshida SH, Chinchar VG, Miller NW, Clem LW (1997) Cytotoxic activity generated from channel catfish peripheral blood leukocytes in mixed leukocyte cultures. Cell Immunol 177:154–161

    Article  CAS  PubMed  Google Scholar 

  • Sullivan C, Charette J, Catchen J, Lage CR, Giasson G, Postlethwait JH, Millard PJ, Kim CH (2009) The gene history of zebrafish tlr4a and tlr4b is predictive of their divergent functions. J Immunol 183:5896–5908

    Article  CAS  PubMed  Google Scholar 

  • Takai T (2005) Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology 115:433–440

    Article  CAS  PubMed  Google Scholar 

  • Traver T, Herbomel P, Patton EE, Murphy R, Yoder JA, Litman GW, Catic A, Amemiya CT, Zon LI, Trede NS (2003) The zebrafish as a model organism to study development of the immune system. Adv Immunol 81:253–330

    PubMed  Google Scholar 

  • Viertlboeck BC, Crooijmans RP, Groenen MA, Gobel TW (2004) Chicken Ig-like receptor B2, a member of a multigene family, is mainly expressed on B lymphocytes, recruits both Src homology 2 domain containing protein tyrosine phosphatase (SHP)-1 and SHP-2, and inhibits proliferation. J Immunol 173:7385–7393

    CAS  PubMed  Google Scholar 

  • Viertlboeck BC, Habermann FA, Schmitt R, Groenen MA, Du PL, Gobel TW (2005) The chicken leukocyte receptor complex: a highly diverse multigene family encoding at least six structurally distinct receptor types. J Immunol 175:385–393

    CAS  PubMed  Google Scholar 

  • Viertlboeck BC, Schweinsberg S, Hanczaruk MA, Schmitt R, Du PL, Herberg FW, Gobel TW (2007) The chicken leukocyte receptor complex encodes a primordial, activating, high-affinity IgY Fc receptor. Proc Natl Acad Sci USA 104:11718–11723

    Article  CAS  PubMed  Google Scholar 

  • Viertlboeck BC, Schweinsberg S, Schmitt R, Herberg FW, Gobel TW (2009) The chicken leukocyte receptor complex encodes a family of different affinity FcY receptors. J Immunol 182:6985–6992

    Article  CAS  PubMed  Google Scholar 

  • Viertlboeck BC, Gick CM, Schmitt R, Du PL, Gobel TW (2010) Complexity of expressed CHIR genes. Dev Comp Immunol 34:866–873

    Article  CAS  PubMed  Google Scholar 

  • Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA (2010) Perforin: structure, function, and role in human immunopathology. Immunol Rev 235:35–54

    CAS  PubMed  Google Scholar 

  • Walzer T, Blery M, Chaix J, Fuseri N, Chasson L, Robbins SH, Jaeger S, Andre P, Gauthier L, Daniel L, Chemin K, Morel Y, Dalod M, Imbert J, Pierres M, Moretta A, Romagne F, Vivier E (2007a) Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci U S A 104:3384–3389

    Article  CAS  PubMed  Google Scholar 

  • Walzer T, Jaeger S, Chaix J, Vivier E (2007b) Natural killer cells: from CD3(−)NKp46(+) to post-genomics meta-analyses. Curr Opin Immunol 19:365–372

    Article  CAS  PubMed  Google Scholar 

  • Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grutzner F, Belov K, Miller W, Clarke L, Chinwalla AT, Yang SP, Heger A, Locke DP, Miethke P, Waters PD, Veyrunes F, Fulton L, Fulton B, Graves T, Wallis J, Puente XS, Lopez-Otin C, Ordonez GR, Eichler EE, chen L, Cheng Z, Deakin JE, Alsop A, Thompson K, Kirby P, Papenfuss AT, Wakefield MJ, Olender T, Lancet D, Huttley GA, Smit AF, Pask A, Temple-Smith P, Batzer MA, Walker JA, Konkel MK, Harris RS, Whittington CM, Wong ES, Gemmell NJ, Buschiazzo E, Vargas Jentzsch IM, Merkel A, Schmitz J, Zemann A, Churakov G, Kriegs JO, Brosius J, Murchison EP, Sachidanandam R, Smith C, Hannon GJ, Tsend-Ayush E, McMillan D, Attenborough R, Rens W, Ferguson-Smith M, Lefevre CM, Sharp JA, Nicholas KR, Ray DA, Kube M, Reinhardt R, Pringle TH, Taylor J, Jones RC, Nixon B, Dacheux JL, Niwa H, Sekita Y, Huang X, Stark A, Kheradpour P, Kellis M, Flicek P, Chen Y, Webber C, Hardison R, Nelson J, Hallsworth-Pepin K, Delehaunty K, Markovic C, Minx P, Feng Y, Kremitzki C, Mitreva M, Glasscock J, Wylie T, Wohldmann P, Thiru P, Nhan MN, Pohl CS, Smith SM, Hou S, Nefedov M, de Jong PJ, Renfree MB, Mardis ER, Wilson RK (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175–183

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Zhou J, Chen X, Shah RN, Liu J, Orcutt TM, Traver D, Djeu JY, Litman GW, Yoder JA (2007) The zebrafish activating immune receptor Nitr9 signals via Dap12. Immunogenet 59:813–821

    Article  CAS  Google Scholar 

  • Wong ES, Sanderson CE, Deakin JE, Whittington CM, Papenfuss AT, Belov K (2009) Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes. Immunogenetics 61:565–579

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA (2004) Investigating the function, morphology and genetics of cytotoxic cells in bony fish. Comp Biochem Physiol 138:271–290

    Google Scholar 

  • Yoder JA (2009) Form, function and phylogenetics of NITRs in bony fish. Dev Comp Immunol 33:135–144

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Mueller MG, Wei S, Corliss BC, Prather DM, Willis T, Litman RT, Djeu JY, Litman GW (2001) Immune-type receptor genes in zebrafish share genetic and functional properties with genes encoded by the mammalian lymphocyte receptor cluster. Proc Natl Acad Sci USA 98:6771–6776

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Litman RT, Mueller MG, Desai S, Dobrinski KP, Montgomery JS, Buzzeo MP, Amemiya CT, Trede NS, Wei S, Djeu JY, Humphray S, Jekosch K, Hernandez Prada JA, Ostrov DA, Litman GW (2004) Resolution of the NITR gene cluster in zebrafish. Proc Natl Acad Sci USA 101:15706–15711

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Orcutt TM, Traver D, Litman GW (2007) Structural characteristics of zebrafish orthologs of adaptor molecules that associate with transmembrane immune receptors. Gene 401:154–164

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Cannon JP, Litman RT, Murphy C, Freeman JL, Litman GW (2008) Evidence for a transposition event in a second NITR gene cluster in zebrafish. Immunogenet 60:257–265

    Article  CAS  Google Scholar 

  • Yoder JA, Turner PM, Wright PD, Wittamer V, Bertrand JY, Traver D, Litman GW (2010) Developmental and tissue-specific expression of NITRs. Immunogenetics 62:117–122

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama WM, Plougastel BFM (2003) Immune functions encoded by the natural killer complex. Nat Rev Immunol 3:304–316

    Article  CAS  PubMed  Google Scholar 

  • Zelensky AN, Gready JE (2004) C-type lectin-like domains in Fugu rubripes. Genomics 5:51

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Robison B, Thorgaard GH, Ristow SS (2000) Cloning, mapping and genomic organization of a fish C-type lectin gene from homozygous clones of rainbow trout (Oncorhynchus mykiss). Biochim Biophys Acta 1494:14–22

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Barb Pryor for editorial assistance and Dr. Martin Flajnik for invaluable input. The authors are supported by funds from the National Institutes of Health (R01 AI057559 to GWL and JAY and R01 AI23337 to GWL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary W. Litman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 98.8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoder, J.A., Litman, G.W. The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics 63, 123–141 (2011). https://doi.org/10.1007/s00251-010-0506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-010-0506-4

Keywords

Navigation