Skip to main content

Advertisement

Log in

Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited antimicrobial activities against at least one of the five test organisms. Among the remaining 36 actinobacteria that are negative for PCR amplification of the domains for the biosynthetic genes, 33 strains showed antimicrobial activities against at least one of the five test pathogens. In summary, the findings presented in this study emphasized the importance of underexplored habitats such as Tengchong hot springs as potential sources for search of bioactive molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594

    Article  PubMed  Google Scholar 

  2. Amann R (2000) Who is out there? Microbial aspects of biodiversity. Syst Appl Microbiol 23:1–8

    Article  CAS  PubMed  Google Scholar 

  3. Amos GCA, Borsetto C, Laskaris P, Krsek M, Berry AE, Newsham KK, Calvo-Bado L, Pearce DA, Vallin C, Wellington EMH (2015) Designing and implementing an assay for the detection of rare and divergent NRPS and PKS clones in European, Antarctic and Cuban soils. PLoS ONE 10:e0138327. doi:10.1371/journal.pone.0138327

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in Actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24

    Article  CAS  PubMed  Google Scholar 

  5. Becerril-Espinosa A, Freel KC, Jensen PR, Soria-Mercado IE (2013) Marine actinobacteria from the gulf of California: diversity, abundance and secondary metabolite biosynthetic potential. Antonie Van Leeuwenhoek 103:809–819

    Article  CAS  PubMed  Google Scholar 

  6. Bentley SD, Chater KF, Ceerdeno-Tarraga GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrel BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  7. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  PubMed  Google Scholar 

  8. Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395

    Article  PubMed  Google Scholar 

  9. Bull AT (2011) Actinobacteria of the extremobiosphere. In: Horikoshi K (ed) Extremophiles handbook. Springer, Japan, pp 1203–1240

    Chapter  Google Scholar 

  10. Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569

    Article  CAS  PubMed  Google Scholar 

  11. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100(Suppl 2):14555–14561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Charlop-Powers Z, Owen JG, Reddy BVB, Ternei MA, Guimaraes DO, de Frias UA, Pupo MT, Seepe P, Feng Z, Brady SF (2015) Global biogeographic sampling of bacterial secondary metabolism. eLife 4:e05048. doi:10.7554/eLife.05048

    Article  PubMed  PubMed Central  Google Scholar 

  13. de la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133

    Article  PubMed  Google Scholar 

  14. Donadio S, Monciardina P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109

    Article  CAS  PubMed  Google Scholar 

  15. Doroghazi JR, Metcalf WW (2013) Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics 14:611. doi:10.1186/1471-2164-14-611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duan YY, Ming H, Dong L, Yin YR, Zhang Y, Zhou EM, Liu L, Nie GX, Li WJ (2014) Streptomyces calidiresistens sp. nov., isolated from a hot spring sediment. Antonie Van Leeuwenhoek 106:189–196

    Article  CAS  PubMed  Google Scholar 

  17. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–79

    Article  Google Scholar 

  18. Gottardi EM, Krawczyk JM, von Suchodoletz H, Schadt S, Muhlenweg A, Uguru GC, Plezer S, Fiedler HP, Bibb MJ, Stach JEM, Suusmuth RD (2011) Abyssomicin biosynthesis: formation of an unusual polyketide, antibiotic feeding studies and genetic analysis. ChemBioChem 12:1401–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hanshew AS, McDonald BR, Diaz CD, Dijeto-Lordon C, Blatrix R, Currie CR (2015) Characterization of actinobacteria associated with three ant-plant mutualisms. Microb Ecol 69:192–203

    Article  PubMed  Google Scholar 

  20. Hedlund BP, Cole JK, Williams AJ, Hou W, Zhou E, Li W, Dong H (2012) A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China. Geosci Front 3:273–288

    Article  Google Scholar 

  21. Hedlund BP, Reysenbach AL, Huang L, Ong JC, Liu Z, Dodsworth JA, Ahmed R, Williams AJ, Briggs BR, Liu Y, Hou W, Dong H (2015) Isolation of diverse members of the Aquificales from geothermal springs in Tengchong, China. Front Microbiol 6:157. doi:10.3389/fmicb.2015.00157

    Article  PubMed  PubMed Central  Google Scholar 

  22. Holmes AJ, Bowyer J, Holley MP, O’Donoghue M, Montgomery M, Gilings MR (2000) Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol Ecol 33:111–120

    Article  CAS  PubMed  Google Scholar 

  23. Hotopp JCD (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27:157–163

    Article  Google Scholar 

  24. Hugo WB, Russell AD (1983) Pharmaceutical microbiology, 3rd edn. Blackwell, Oxford

    Google Scholar 

  25. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  26. Jami M, Ghanbari M, Kneifel W, Domig KJ (2015) Phylogenetic diversity and biological activity of culturable actinobacteria isolated form freshwater fish gut microbiota. Microbiol Res 175:6–15

    Article  PubMed  Google Scholar 

  27. Jiao JY, Liu L, Zhou EM, Wei DQ, Ming H, Xian WD, Yuan CG, Zhong JM, Li WJ (2015) Actinomadura amylolytica sp. nov. and Actinomadura cellulosilytica sp. nov., isolated from geothermally heated soil. Antonie Van Leeuwenhoek 108:75–83

    Article  CAS  PubMed  Google Scholar 

  28. Kim JH, Feng Z, Bauer JD, Kallifidas D, Calle PY, Brady SF (2010) Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR. Biopolymers 93:833–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  30. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–130

    Article  CAS  PubMed  Google Scholar 

  31. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Zhao GZ, Huang HY, Qin S, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ, Strobel G (2012) Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. Antonie Van Leeuwenhoek 101:515–527

    Article  PubMed  Google Scholar 

  33. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428

    Article  PubMed  Google Scholar 

  34. Li Y, Li Z, Yamanaka K, Xu Y, Zhang W, Vlamakis H, Kolter R, Moore BS, Qian PY (2015) Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis. Sci Rep 5:9383. doi:10.1038/srep09383

    Article  CAS  PubMed  Google Scholar 

  35. Luo K (2010) Screening of PKS gene from soil metagenomics library and identification of the active substance against nematode. Plant Protection (in chinese) 36:5. doi:10.3969/j.issn.0529-1542.2010.05.008

    Google Scholar 

  36. Manivasagan P, Venkatesan J, Kim SK (2013) Introduction to marine actinobacteria. In: Kim SK (ed.). Marine Microbiology: Bioactive Compounds and Biotechnological Applications, 1st edn. Wiley-VCH Verlag GmbH & Co, KGaA, pp 1–19

  37. Metsä-Ketelä M, Salo V, Halo L, Hautala A, Hakala J, Mäntsälä P, Ylihonko K (1999) An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiol Lett 180:1–6

    Article  PubMed  Google Scholar 

  38. Moffitt MC, Neilan BA (2001) On the presence of peptide synthetase and polyketide synthase genes in the cyanobacterial genus Nodularia. FEMS Microbiol Lett 196:207–214

    Article  CAS  PubMed  Google Scholar 

  39. Moffitt MC, Neilan BA (2003) Evolutionary affiliations within the superfamily of ketosynthases reflect complex pathway associations. J Mol Evol 56:446–457

    Article  CAS  PubMed  Google Scholar 

  40. Neilan BA, Dittmann E, Rouhiainen L, Bass RA, Schaub V, Sivonen K, Borner T (1999) Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J Bacteriol 181:4089–4097

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nimaichand S, Devi AM, Tamreihao K, Ningthoujam DS, Li WJ (2015) Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India) and their antimicrobial activities. Front Microbiol 6:413. doi:10.3389/fmicb.2015.00413

    Article  PubMed  PubMed Central  Google Scholar 

  42. Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98:12215–12220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parveen B, Reveilliez JP, Mary I, Ravet V, Bronner G, Mangot JF, Domaizon I, Debroas D (2011) Diversity and dynamics of free-living and particle-associated betaproteobacteria and Actinobacteria in relation to phytoplankton and zooplankton communities. FEMS Microbiol Ecol 77:461–476

    Article  CAS  PubMed  Google Scholar 

  44. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Riedlinger J, Reicke A, Zahner H, Krismer B, Bull AT, Maldonado LA, Ward AC, Goodfellow M, Bister B, Bischoff D, Sussmuth RD, Fiedler HP (2004) Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot 57:271–279

    Article  CAS  PubMed  Google Scholar 

  46. Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13:509–523

    Article  CAS  PubMed  Google Scholar 

  47. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  48. Schneemann I, Nagel K, Kajahn I, Labes A, Wiese J, Imhoff JF (2010) Comprehensive investigation of marine actinobacteria associated with the sponge Halichondria panicea. Appl Environ Microbiol 76:3702–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song ZQ, Chen JQ, Jiang HC, Zhou EM, Tang SK, Zhi XY, Zhang LX, Zhang CL, Li WJ (2010) Diversity of Crenarchaeoto in terrestrial hot springs in Tengchong, China. Extremophiles 14:287–296

    Article  PubMed  Google Scholar 

  50. Song ZQ, Zhi XY, Li WJ, Jiang HC, Zhang CL, Dong HL (2009) Actinobacterial diversity in hot springs in Tengchong (China), Kamchatka (Russia), and Nevada (USA). Geomicrobiol J 26:256–263

    Article  CAS  Google Scholar 

  51. Sun W, Zhang F, He L, Karthik L, Li Z (2015) Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery. Front Microbiol 6:1048. doi:10.3389/fmicb.2015.01048

    PubMed  PubMed Central  Google Scholar 

  52. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2011) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  Google Scholar 

  53. Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci U S A 111:15202–15207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vernon TR (1955) Spore formation in the genus Streptomyces. Nature 176:935–936

    Article  CAS  PubMed  Google Scholar 

  55. Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. Chembiochem 10:625–633

    Article  CAS  PubMed  Google Scholar 

  56. Zhou EM, Tang SK, Sjoholm C, Song ZQ, Yu TT, Yang LL, Ming H, Nie GX, Li WJ (2012) Thermoactinospora rubra gen. nov., sp., nov., a thermophilic actinomycete isolated from Tengchong, Yunnan province, south-west China. Antonie Van Leeuwenhoek 102:177–185

    Article  CAS  PubMed  Google Scholar 

  57. Zhou EM, Yang LL, Song ZQ, Yu TT, Nie GX, Ming H, Zhou Y, Tang SK, Li WJ (2012) Thermocatellispora tengchongensis gen. nov., sp. nov., a new member of the family Streptosporangiaceae. Int J Syst Evol Microbiol 62:2417–2423

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Project of International Cooperation of Ministry of Science & Technology (MOST) (No. 2013DFA31980), National Natural Science Foundation of China (Nos. 31070007, 31470139 and 41120124003), Yunnan Provincial Natural Science Foundation (2013FA004), the Program for New Century Excellent Talents in University MOE (NCET-12-0954), and the Fundamental Research Funds for National University (China University of Geosciences-Wuhan). W-J Li was also supported by Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2014). We are grateful to three anonymous reviewers, whose constructive criticisms significantly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Chen Jiang or Wen-Jun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 231 kb)

ESM 2

(PDF 183 kb)

ESM 3

(PDF 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Salam, N., Jiao, JY. et al. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles. Microb Ecol 72, 150–162 (2016). https://doi.org/10.1007/s00248-016-0756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0756-2

Keywords

Navigation