Skip to main content
Log in

Characterization of Actinobacteria Associated with Three Ant–Plant Mutualisms

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Ant–plant mutualisms are conspicuous and ecologically important components of tropical ecosystems that remain largely unexplored in terms of insect-associated microbial communities. Recent work has revealed that ants in some ant–plant systems cultivate fungi (Chaetothyriales) within their domatia, which are fed to larvae. Using Pseudomyrmex penetrator/Tachigali sp. from French Guiana and Petalomyrmex phylax/Leonardoxa africana and Crematogaster margaritae/Keetia hispida, both from Cameroon, as models, we tested the hypothesis that ant–plant–fungus mutualisms co-occur with culturable Actinobacteria. Using selective media, we isolated 861 putative Actinobacteria from the three systems. All C. margaritae/K. hispida samples had culturable Actinobacteria with a mean of 10.0 colony forming units (CFUs) per sample, while 26 % of P. penetrator/Tachigali samples (mean CFUs 1.3) and 67 % of P. phylax/L. africana samples (mean CFUs 3.6) yielded Actinobacteria. The largest number of CFUs was obtained from P. penetrator workers, P. phylax alates, and C. margaritae pupae. 16S rRNA gene sequencing and phylogenetic analysis revealed the presence of four main clades of Streptomyces and one clade of Nocardioides within these three ant–plant mutualisms. Streptomyces with antifungal properties were isolated from all three systems, suggesting that they could serve as protective symbionts, as found in other insects. In addition, a number of isolates from a clade of Streptomyces associated with P. phylax/L. africana and C. margaritae/K. hispida were capable of degrading cellulose, suggesting that Streptomyces in these systems may serve a nutritional role. Repeated isolation of particular clades of Actinobacteria from two geographically distant locations supports these isolates as residents in ant–plant–fungi niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rico-Gray V, Oliveira PS (2007) The ecology and evolution of ant-plant interactions. The University of Chicago Press, Chicago, pp 1–331

    Book  Google Scholar 

  2. Beattie A (1989) Myrmecotrophy: plants fed by ants. Trends Ecol Evol 4:172–176

    Article  CAS  PubMed  Google Scholar 

  3. Sagers CL, Ginger SM, Evans RD (2000) Carbon and nitrogen isotopes trace nutrient exchange in an ant-plant mutualism. Oecologia 123:582–586

    Article  Google Scholar 

  4. Fischer RC, Wanek W, Richter A, Mayer V (2003) Do ants feed plants? A 15N labelling study of nitrogen fluxes from ants to plants in the mutualism of Pheidole and Piper. J Ecol 91:126–134

    Article  Google Scholar 

  5. Janzen DH (1974) Epiphytic myrmecophytes in Sarawak: mutualism through the feeding of plants by ants. Biotropica 6:237–259

    Article  Google Scholar 

  6. Rickson FR (1979) Absorption of animal tissue breakdown products into a plant stem-the feeding of a plant by ants. Am J Bot 66:87–90

    Article  Google Scholar 

  7. Treseder KK, Davidson DW, Ehleringer JR (1995) Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte. Nature 375:137–139

    Article  CAS  Google Scholar 

  8. Solano PJ, Dejean A (2004) Ant-fed plants: comparison between three geophytic myrmecophytes. Biol J Linn Soc 83:433–439

    Article  Google Scholar 

  9. Watkins JE, Cardelús CL, Mack MC (2008) Ants mediate nitrogen relations of an epiphytic fern. New Phytol 180:5–8

    Article  CAS  PubMed  Google Scholar 

  10. Davidson DW, Mckey D (1993) The evolutionary ecology of symbiotic ant-plant relationships. J Hymenopt Res 2:13–83

    Google Scholar 

  11. Miehe H (1911) Untersuchungen über die javanische Myrmecodia. Abhandlungen der Math Klasse der Königlich-Sächsischen Gesellschaft der Wissenschaften 312–361

  12. Defossez E, Selosse M-A, Dubois M-P et al (2009) Ant-plants and fungi: a new threeway symbiosis. New Phytol 182:942–949

    Article  PubMed  Google Scholar 

  13. Voglmayr H, Mayer V, Maschwitz U et al (2011) The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions. Fungal Biol 115:1077–1091

    Article  PubMed  Google Scholar 

  14. Blatrix R, Djiéto-Lordon C, Mondolot L et al (2012) Plant–ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant–plant interactions. Proc R Soc Biol Sci 279:3940–3947

    Article  Google Scholar 

  15. Defossez E, Djiéto-Lordon C, McKey D et al (2010) Plant-ants feed their host plant, but above all a fungal symbiont to recycle nitrogen. Proc R Soc Biol Sci 278:1419–1426

    Article  Google Scholar 

  16. Blatrix R, Bouamer S, Morand S, Selosee M-A (2009) Ant-plant mutualisms should be viewed as symbiotic communities. Plant Signal Behav 4:554–556

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lauth J, Ruiz-González MX, Orivel J (2011) New findings in insect fungiculture. Commun Integr Biol 4:728–730

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mueller UG, Gerardo NM, Aanen DK et al (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595

    Article  Google Scholar 

  19. Currie CR, Mueller UG, Malloch D (1999) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci 96:7998–8002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Currie CR (2001) Prevalence and impact of a virulent parasite on a tripartite mutualism. Oecologia 128:99–106

    Article  Google Scholar 

  21. Currie CR, Scott JA, Summerbell RA, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704

    Article  CAS  Google Scholar 

  22. Currie CR, Bot ANM, Boomsma JJ (2003) Experimental evidence of a tripartite mutualism: bacteria protect ant fungus gardens from specialized parasites. Oikos 101:91–102

    Article  Google Scholar 

  23. Fernández-Marín H, Zimmerman JK, Rehner SA, Wcislo WT (2006) Active use of the metapleural glands by ants in controlling fungal infection. Proc R Soc Biol Sci 273:1689–1695

    Article  Google Scholar 

  24. Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Biol Sci 268:1033–1039

    Article  CAS  Google Scholar 

  25. Visser AA, Nobre T, Currie CR et al (2012) Exploring the potential for Actinobacteria as defensive symbionts in fungus-growing termites. Microb Ecol 63:975–985

    Article  CAS  PubMed  Google Scholar 

  26. Kaltenpoth M, Schmitt T, Polidori C et al (2010) Symbiotic streptomycetes in antennal glands of the South American digger wasp genus Trachypus (Hymenoptera, Crabronidae). Physiol Entomol 35:196–200

    Article  CAS  Google Scholar 

  27. Kaltenpoth M, Goettler W, Dale C et al (2006) “Candidatus Streptomyces philanthi”, an endosymbiotic streptomycete in the antennae of Philanthus digger wasps. Int J Syst Evol Microbiol 56:1403–1411

    Article  CAS  PubMed  Google Scholar 

  28. Kaltenpoth M, Yildirim E, Gürbüz MF et al (2012) Refining the roots of the beewolf-Streptomyces symbiosis: antennal symbionts in the rare genus Philanthinus (Hymenoptera, Crabronidae). Appl Environ Microbiol 78:822–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hulcr J, Adams AS, Raffa K et al (2011) Presence and diversity of Streptomyces in Dendroctonus and sympatric bark beetle galleries across North America. Microb Ecol 61:759–768

    Article  PubMed  Google Scholar 

  30. Grubbs KJ, Biedermann PHW, Suen G et al (2011) Genome sequence of Streptomyces griseus strain XyelbKG-1, an ambrosia beetle-associated Actinomycete. J Bacteriol 193:2890–2891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Seipke RF, Barke J, Ruiz-Gonzalez MX et al (2012) Fungus-growing Allomerus ants are associated with antibiotic-producing actinobacteria. Anton Leeuw J Microb 101:443–447

    Article  CAS  Google Scholar 

  32. Adams AS, Jordan MS, Adams SM et al (2011) Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J 5:1323–1331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Poulsen M, Oh D-C, Clardy J, Currie CR (2011) Chemical analyses of wasp-associated Streptomyces bacteria reveal a prolific potential for natural products discovery. PLoS One 6:e16763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Miao V, Davies J (2010) Actinobacteria: the good, the bad, and the ugly. Anton Leeuw Int J G 98:143–150

    Article  Google Scholar 

  35. Vasanthakumar A, Handelsman J, Schloss PD et al (2008) Gut microbiota of an invasive subcortical beetle, Agrilus planipennis Fairmaire, across various life stages. Environ Entomol 37:1344–1353

    Article  PubMed  Google Scholar 

  36. Pasti MB, Pometto AL III, Nuti MP, Crawford DL (1990) Lignin-solubilizing ability of Actinomycetes isolated from termite (Termitidae) Gut. Appl Environ Microbiol 56:2213–2218

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Pasti MB, Belli ML (1985) Cellulolytic activity of Actinomycetes isolated from termites (Termitidae) gut. FEMS Microbiol Lett 26:107–112

    Article  CAS  Google Scholar 

  38. Salem H, Kreutzer E, Sudakaran S, Kaltenpoth M (2013) Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ Microbiol 15:1956–1968

    Article  PubMed  Google Scholar 

  39. Hsu SC, Lockwood JL (1975) Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Hillis DM, Marble BK, Larson A et al (1996) Nucleic acids IV: sequencing and cloning. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, Inc, Sunderland, pp 321–381

    Google Scholar 

  41. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acids techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  42. Cole JR, Wang Q, Cardenas E et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Scott JJ, Oh D, Yuceer MC et al (2008) Bacterial protection of beetle-fungus mutualism. Science 322:63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Cafaro MJ, Currie CR (2005) Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol 51:441–446

    Article  CAS  PubMed  Google Scholar 

  45. Benson DA, Cavanaugh M, Clark K et al (2013) GenBank. Nucleic Acids Res 41:D36–D42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  50. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  51. Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128

    Article  CAS  PubMed  Google Scholar 

  52. Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39:W475–W478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Cafaro MJ, Poulsen M, Little AEF et al (2011) Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proc R Soc Biol Sci 278:1814–1822

    Article  Google Scholar 

  54. Poulsen M, Cafaro MJ, Erhardt DP et al (2009) Variation in Pseudonocardia antibiotic defence helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants. Environ Microbiol Rep 2:534–540

    Article  PubMed Central  PubMed  Google Scholar 

  55. Takasuka TE, Book AJ, Lewin GR et al (2013) Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces. Sci Rep 3:1–10

    Article  Google Scholar 

  56. Hain T, Ward-Rainey N, Kroppenstedt RM et al (1997) Discrimination of Streptomyces albidoflavus strains based on the size and number of 16S-23S ribosomal DNA intergenic spacers. Int J Syst Bacteriol 47:202–206

    Article  CAS  PubMed  Google Scholar 

  57. Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159

    Article  CAS  PubMed  Google Scholar 

  58. Kaltenpoth M, Go W, Herzner G et al (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 15:475–479

    Article  CAS  PubMed  Google Scholar 

  59. Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Erik Houck, Karen Bednar, Diana Xiao, and Dan Phillips for their assistance with lab work, and Gina Lewin and Adam Book for assistance in setting up the cellulose degradation assays. We thank Heidi Horn, Jonathan Klassen, and Charles Mason for technical suggestions and comments on this manuscript. ASH was partially funded by National Institutes of Health T32 GM07215-37. CRC received funding from National Science Foundation MCB-0702025 and DOE BER Office of Science DE-FC02-07ER64494.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cameron R. Currie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Representatives of bioassay evaluation of antifungal activity. Nineteen isolates were tested for their antifungal activity. a Trichoderma reesei control plate after complete growth over the full plate. b Nocardiodies sp. LaPpAH12 with no ZOI against T. reesei. c Streptomyces sp PsTaAH5 with a moderate ZOI against T. reesei. d Streptomyces sp KhCrAH316 with moderate ZOI against T. reesei. e Streptomyces sp PsTaAH124 with almost complete suppression of T. reesei (GIF 102 kb)

High Resolution Image (EPS 5919 kb)

Supplemental Table 1

(XLSX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanshew, A.S., McDonald, B.R., Díaz Díaz, C. et al. Characterization of Actinobacteria Associated with Three Ant–Plant Mutualisms. Microb Ecol 69, 192–203 (2015). https://doi.org/10.1007/s00248-014-0469-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0469-3

Keywords

Navigation