Skip to main content

Advertisement

Log in

Biological Soil Crusts from Coastal Dunes at the Baltic Sea: Cyanobacterial and Algal Biodiversity and Related Soil Properties

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Biological soil crusts (BSCs) are known as “ecosystem-engineers” that have important, multifunctional ecological roles in primary production, in nutrient and hydrological cycles, and in stabilization of soils. These communities, however, are almost unstudied in coastal dunes of the temperate zone. Hence, for the first time, the biodiversity of cyanobacterial and algal dominated BSCs collected in five dunes from the southern Baltic Sea coast on the islands Rügen and Usedom (Germany) was investigated in connection with physicochemical soil parameters. The species composition of cyanobacteria and algae was identified with direct determination of crust subsamples, cultural methods, and diatom slides. To investigate the influence of soil properties on species composition, the texture, pH, electrical conductivity, carbonate content, total contents of carbon, nitrogen, phosphorus, and the bioavailable phosphorus-fraction (PO4 3−) were analyzed in adjacent BSC-free surface soils at each study site. The data indicate that BSCs in coastal dunes of the southern Baltic Sea represent an ecologically important vegetation form with a surprisingly high site-specific diversity of 19 cyanobacteria, 51 non-diatom algae, and 55 diatoms. All dominant species of the genera Coleofasciculus, Lyngbya, Microcoleus, Nostoc, Hydrocoryne, Leptolyngbya, Klebsormidium, and Lobochlamys are typical aero-terrestrial cyanobacteria and algae, respectively. This first study of coastal sand dunes in the Baltic region provides compelling evidence that here the BSCs were dominated by cyanobacteria, algae, or a mixture of both. Among the physicochemical soil properties, the total phosphorus content of the BSC-free sand was the only factor that significantly influenced the cyanobacterial and algal community structure of BSCs in coastal dunes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Martínez ML, Psuty NP, Lubke RA (2004) A perspective on coastal dunes. In: Martínez ML, Psuty NP (eds) Coastal dunes: ecology and conservation. Springer-Verlag, pp 3–10

  2. Miller TE, Gornish ES, Buckley HL (2009) Climate and coastal dune vegetation: disturbance, recovery, and succession. Plant Ecol 206:97–104. doi:10.1007/s11258-009-9626-z

    Article  Google Scholar 

  3. Virginia Marine Resources Commission (1989) Coastal primary sand dunes/beaches guidelines. Guidelines for the permitting of activities which encroach into coastal primary sand dunes/beaches. Reprinted 1993

  4. García Novo F, DíazBarradas MC, Zunzunegui M, GarcíaMora R, GallegoFernández JB (2004) Plant functional types in coastal dune habitats. In: Martínez ML, Psuty NP (eds) Coastal dunes: ecology and conservation. Springer-Verlag, pp 155–169

  5. Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer-Verlag, pp 3–30

  6. Breen K, Lévesque E (2008) The influence of biological soil crusts on soil characteristics along a high arctic glacier foreland, Nunavut, Canada. Arct Antarct Alp Res 40:287–297. doi:10.1657/1523-0430(06-098)[BREEN]2.0.CO;2

    Article  Google Scholar 

  7. Fischer T, Veste M, Bens O, Hüttl RF (2012) Dew formation on the surface of biological soil crusts in central European sand ecosystems. Biogeosciences 9:4621–2628. doi:10.5194/bg-9-4621-2012

    Article  Google Scholar 

  8. Colesie C, Gommeaux M, Green ATG, Büdel B (2013) Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarct Sci 26:115–123. doi:10.1017/S0954102013000291

    Article  Google Scholar 

  9. Van den Acker JAM, Jungerius PD (1985) The role of algae in the stabilization of coastal dune blowouts. Earth Surf Proc Land 10:189–192. doi:10.1002/esp.3290100210

    Article  Google Scholar 

  10. Grote EE, Belnap J, Housman DC, Sparks JP (2010) Carbon exchange in biological soil crusts communities under differential temperatures and soil water contents: implications for global change. Glob Chang Biol 16:2763–2774. doi:10.1111/j.1365-2486.2010.02201.x

    Article  Google Scholar 

  11. Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–135. doi:10.1007/s00374-002-0452-x

    Article  CAS  Google Scholar 

  12. Wu Y, Rao B, Wu P, Liu Y, Li G, Li D (2013) Development of artificially induced biological soil crusts in fields and their effects on top soil. Plant Soil 370:115–124. doi:10.1007/s11104-013-1611-6

    Article  CAS  Google Scholar 

  13. Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178. doi:10.1002/hyp.6325

    Article  CAS  Google Scholar 

  14. Harper KT, Belnap J (2001) The influence of biological soil crusts on mineral uptake by associated vascular plants. J Arid Environ 47:347–357. doi:10.1006/jare.2000.0713

    Article  Google Scholar 

  15. Büdel B (2001) Synopsis: comparative biogeography and ecology of soil-crust biota. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer-Verlag, pp 141–152

  16. Ashley J, Rushforth SR, Johansen JR (1985) Soil algae of cryptogamic crusts from the Uintah Basin, Utah, U.S.A. Great Basin Nat 45:432–442

    Google Scholar 

  17. Flechtner VR, Johansen JR, Clark WH (1998) Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Nat 58:295–311

    Google Scholar 

  18. Hoppert M, Reimer R, Kemmling A, Schröder A, Günzl B, Heinken T (2004) Structure and reactivity of a biological soil crust from a xeric sandy soil in Central Europe. Geomicrobiol J 21:183–191. doi:10.1080/01490450490275433

    Article  Google Scholar 

  19. Lukešová A, Hoffmann L (1996) Soil algae from acid rain impacted forest areas of the Krušné Hory Mts. 1. Algal communities. Vegetatio 125:123–136. doi:10.1007/BF00044646

    Article  Google Scholar 

  20. Tomas AD, Dougill AJ (2006) Distribution and characteristics of cyanobacterial soil crusts in the Molopo Basin, South Africa. J Arid Environ 64:270–283. doi:10.1016/j.jaridenv.2005.04.011

    Article  Google Scholar 

  21. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247. doi:10.1007/s00248-008-9449-9

    Article  PubMed  Google Scholar 

  22. Büdel B, Colesie C, Green TGA, Grube M, Lázaro Suau R, Loewen-Schneider K, Maier S, Peer T, Pintado A, Raggio J, Ruprecht U, Sancho LG, Schroeter B, Türk R, Weber B, Wedin M, Westberg M, Williams L, Zheng L (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodivers Conserv 23:1639–1658. doi:10.1007/s10531-014-0645-2

    Article  PubMed Central  PubMed  Google Scholar 

  23. De Winder B (1990) Ecophysiological strategies of drought-tolerant phototrophic microorganisms in dune soils. Dissertation, University of Amsterdam

  24. Pluis JLA, de Winder B (1990) Natural stabilization. Catena Suppl 18:195–208

    Google Scholar 

  25. Smith SM, Abed RMM, Garcia-Pichel F (2004) Biological soil crusts of sand dunes in Cape Cod National Seashore, Massachusetts, USA. Microb Ecol 48:200–208. doi:10.1007/s00248-004-0254-9

    Article  PubMed  CAS  Google Scholar 

  26. Müller-Westermeier G, Kreis A, Dittmann E, Barfus K, Czeplak G, Riecke W (2003) Klimaatlas Bundesrepublik Deutschland Teil 3 Bewölkung, Globalstrahlung, Anzahl der Tage klimatologischer Ereignisse, Phänologie. (DeutscherWetterdienst)

  27. Bischoff HW, Bold HC (1963) Some soil algae from Enchanted Rock and related algal species. Phycol Stud IV Univ Texas Publ 6318:1–95

    Google Scholar 

  28. Starr RC, Zeikus JA (1993) UTEX – the culture collection of algae at the University of Texas at Austin 1993 list of cultures. J Phycol 29:1–106. doi:10.1111/j.0022-3646.1993.00001.x

    Article  Google Scholar 

  29. Ettl H, Gärtner G (2014) Syllabus der Boden-, Luft- und Flechtenalgen, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  30. Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1 Teil: Chroococcales. Süsswasserflora von Mitteleuropa, Bd 19/1. Spektrum, Akad. Verl., Heidelberg, Berlin

  31. Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2 Teil: Oscillatoriales. Süsswasserflora von Mitteleuropa, Bd 19/2. Spektrum, Akad. Verl., München

  32. Komárek J (2013) Cyanoprokaryota. Heterocytous genera, Süsswasserflora von Mitteleuropa, Bd. 19/3. Springer Spektrum

  33. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Süsswasserflora von Mitteleuropa. Band 2/3. Gustav Fischer Verlag

  34. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae 4. Teil: Achnanthaceae. In: Süsswasserflora von Mitteleuropa. Band 2/4. Gustav Fischer Verlag

  35. Krammer K (2000) The genus Pinnularia. In: Diatoms of Europe Vol. 1. A.R.G. Gantner Verlag K.G

  36. Witkowski A, Lange-Bertalot H, Metzeltin D (2000) Diatom flora of marine coasts vol. 1, Iconographia Diatomologica. A.R.G. Gantner Verlag

  37. Lange-Bertalot H (2001) Navicula sensu stricto.10 genera separated from Navicula sensu lato. Frustulia. In Diatoms of Europe Vol. 2. A.R.G. Gantner Verlag K.G

  38. Lange-Bertalot H, Cavacini P, Tagliaventi N, Alfinito S (2003) Diatoms of Sardinia. Rare and 76 new species in rock pools and other ephemeral waters. Iconographia Diatomologica. In Annotated diatom monographs vol. 12: biogeography - ecology – taxonomy. A.R.G. Gantner Verlag

  39. Hofmann G, Werum M, Lange-Bertalot H (2013) Diatomeen im Süßwasser-Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis. Über 700 der häufigsten Arten und ihre Ökologie. Koeltz Scientific Books

  40. Blume H-P, Stahr K, Leinweber P (2011) Bodenkundliches Praktikum, 3rd edn. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  41. Ad hoc- Arbeitsgruppe Boden (2005) Bodenkundliche Kartieranleitung. 5. Aufl. Hannover

  42. Johansen JR, Ashley J, Rayburn WR (1993) Effects of rangefire on soil algal crusts in semiarid shrub-steppe of the lower Columbia Basin and their subsequent recovery. Great Basin Nat 53:73–88

    Google Scholar 

  43. Cabała J, Rhamonov O (2004) Cyanophyta and algae as an important component of biological crust from the Pustynia Błędowska Desert (Poland). Polish Bot J 49:93–100

    Google Scholar 

  44. Lukešová A (2001) Soil algae in brown coal and lignite post-mining areas in Central Europe (Czech Republic and Germany). Restor Ecol 9:341–350. doi:10.1046/j.1526-100X.2001.94002.x

    Article  Google Scholar 

  45. Langhans TM, Storm C, Schwabe A (2009) Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb Ecol 58:394–407. doi:10.1007/s00248-009-9532-x

    Article  PubMed  Google Scholar 

  46. Hawkes CV, Flechtner VR (2002) Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microb Ecol 43:1–12. doi:10.1007/s00248-001-1017-5

    Article  PubMed  CAS  Google Scholar 

  47. Garcia-Pichel F, López-Cortés A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902–1910. doi:10.1128/AEM.67.4.1902-1910.2001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Cardon ZG, Gray DW, Lewis LA (2008) The green algal underground: evolutionary secrets of desert cells. Bioscience 58:114–122. doi:10.1641/B580206

    Article  Google Scholar 

  49. Johansen JR (1993) Cryptogamic crusts of semiarid and arid lands of North America. J Phycol 29:140–147. doi:10.1111/j.0022-3646.1993.00140.x

    Article  Google Scholar 

  50. Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50:396–407. doi:10.1007/s00248-005-0246-4

  51. Johansen JR, Rushforth SR, Brotherson JD (1981) Subaerial algae of Navajo National Monument, Arizona. Great Basin Nat 41:433–439

    Google Scholar 

  52. Darby DA, Burckle LH, Clark DL (1974) Airborne dust on the Arctic ice pack, its composition and fallout rate. Earth Planet Sci Lett 24:166–172. doi:10.1016/0012-821X(74)90093-4

    Article  Google Scholar 

  53. Lee TF, Eggleston PM (1989) Airborne algae and cyanobacteria. Grana 28:63–66. doi:10.1080/00173138909431014

    Article  Google Scholar 

  54. Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  55. Schmidt SK, Nemergut DR, Todd BT, Lynch RC, Darcy JL, Cleveland CC, King AJ (2012) A simple method for determining limiting nutrients for photosynthetic crusts. Plant Ecol Divers 5:513–519. doi:10.1080/17550874.2012.738714

    Article  Google Scholar 

  56. Anderson DC, Harper KT, Holmgren RC (1982) Factors influencing development of cryptogamic soil crusts in Utah deserts. J Range Manag 35:180–185. doi:10.2307/3898386

    Article  Google Scholar 

  57. Levin N, Kidron GJ, Ben-Dor E (2007) Surface properties of stabilizing coastal dunes: combining spectral and field analyses. Sedimentology 54:771–788. doi:10.1111/j.1365-3091.2007.00859.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Elena Heilmann, Dr. Dana Zimmer, and Britta Balz (Soil Science, University of Rostock, Germany) for their technical support during soil analyses as well as Dr. Anastasia Kryvenda and Natalya Rybalka (University of Göttingen, Germany) for help in identification of some Xanthophyceae. The work has been partly funded by the Deutsche Forschungsgemeinschaft (DFG) Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” (Project Crustfunction KA899/28-1) and the Leibniz Science Campus Phosphorus Research Rostock. T.M. thanks the Alexander von Humboldt Foundation for financial support (Georg-Forster research fellowship at the University of Rostock).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karoline Schulz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulz, K., Mikhailyuk, T., Dreßler, M. et al. Biological Soil Crusts from Coastal Dunes at the Baltic Sea: Cyanobacterial and Algal Biodiversity and Related Soil Properties. Microb Ecol 71, 178–193 (2016). https://doi.org/10.1007/s00248-015-0691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0691-7

Keywords

Navigation