Skip to main content

Advertisement

Log in

Biological Soil Crusts of Sand Dunes in Cape Cod National Seashore, Massachusetts, USA

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Biological soil crusts cover hundreds of hectares of sand dunes at the northern tip of Cape Cod National Seashore (Massachusetts, USA). Although the presence of crusts in this habitat has long been recognized, neither the organisms nor their ecological roles have been described. In this study, we report on the microbial community composition of crusts from this region and describe several of their physical and chemical attributes that bear on their environmental role. Microscopic and molecular analyses revealed that eukaryotic green algae belonging to the genera Klebsormidium or Geminella formed the bulk of the material sampled. Phylogenetic reconstruction of partial 16S rDNA sequences obtained from denaturing gradient gel electrophoresis (DGGE) fingerprints also revealed the presence of bacterial populations related to the subclass of the Proteobacteria, the newly described phylum Geothrix/Holophaga/Acidobacterium, the Cytophaga/Flavobacterium/Bacteroides group, and spirochetes. The presence of these crusts had significant effects on the hydric properties and nutrient status of the natural substrate. Although biological soil crusts are known to occur in dune environments around the world, this study enhances our knowledge of their geographic distribution and suggests a potential ecological role for crust communities in this landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. RMM Abed F Garcia-Pichel (2001) ArticleTitleChanges after long-term transplant in microbial mat cyanobacterial community composition revealed with a polyphasic approach. Environ Microbiol 3 53–62 Occurrence Handle10.1046/j.1462-2920.2001.00159.x Occurrence Handle1:STN:280:DC%2BD3M7lslSnsg%3D%3D Occurrence Handle11225723

    Article  CAS  PubMed  Google Scholar 

  2. FM Ausubel R Brent RE Kingston DD Moore JG Seidman JA Smith (1993) Current Protocols in Molecular Biology, vol. 1 Greene Publishers & Wiley-Interscience New York

    Google Scholar 

  3. J Belnap (1994) Potential role of cryptobiotic soil crust in semiarid rangelands. SB Monsen SG Kitchen (Eds) Proceedings—Ecology and Management of Annual Rangelands. General Technical Report INT-GTR 313 USDA Forest Service Intermountain Research Station, Ogden 179–185

    Google Scholar 

  4. J Belnap OL Lange (2003) Biological Soil Crusts: Structure, Function, and Management Springer-Verlag Berlin

    Google Scholar 

  5. RJ Beymer JM Klopatek (1992) ArticleTitleEffects of grazing on cryptogamic crusts in pinyon juniper woodlands in Grand Canyon National Park. Am Midl Naturalist 127 139–148

    Google Scholar 

  6. HC Bold MJ Wynee (1985) Introduction to the Algae. Structure and Reproduction Prentice Hall Englewood Cliffs, NJ

    Google Scholar 

  7. P Bourrelly (1990) Les Algues d’Eaux Douce, vol. 1, Les Algues Vertes N. Boubée et Cie Paris

    Google Scholar 

  8. JD Brotherson SR Rushforth (1983) ArticleTitleInfluence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument, Arizona. Great Basin Naturalist 43 73–78

    Google Scholar 

  9. de Winder, GBM (1990) Ecophysiological strategies of drought-tolerant microorganisms in dune soils. Ph.D. thesis, University of Amsterdam, p 94

  10. Diamond, D, Kougl, D (2001) Determination of total phosphorus in plant tissue by flow injection analysis colorimetry (Method 13-115-01-2-A). Lachat Instruments, Milwaukee

  11. F Garcia-Pichel (2000) Cyanobacteria. J Lederberg (Eds) Encyclopedia of Microbiology, 2nd ed. Academic Press San Diego

    Google Scholar 

  12. F Garcia-Pichel A López-Cortés U Nübel (2001) ArticleTitlePhylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado plateau. Appl Environ Microbiol 67 1902–1910

    Google Scholar 

  13. F Garcia-Pichel SL Johnson D Youngkin J Belnap (2003) ArticleTitleSmall-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb Ecol 46 312 Occurrence Handle10.1007/s00248-003-1004-0 Occurrence Handle1:CAS:528:DC%2BD3sXpt1Wgs70%3D Occurrence Handle14502414

    Article  CAS  PubMed  Google Scholar 

  14. RD Graetz DJ Tongway (1986) ArticleTitleInfluence of grazing management on vegetation, soil structure and nutrient distribution and the infiltration of applied rainfall in a semi-arid chenopod shrubland. Austr J Ecol 11 347–360

    Google Scholar 

  15. CV Hawkes VR Fletcher (2002) ArticleTitleBiological soil crusts in a xeric Florida shrubland: composition, abundance and spatial heterogeneity of crusts with different disturbance histories. Microb Ecol 43 1–12

    Google Scholar 

  16. DL Jeffries JM Klopatek SO Link H Bolton (1992) ArticleTitleAcetylene reduction of cryptogamic crust from a blackbrush community as related to resaturation/dehydration. Soil Biol Biochem 24 1101–1105 Occurrence Handle10.1016/0038-0717(92)90059-7 Occurrence Handle1:CAS:528:DyaK3sXitFGrsw%3D%3D

    Article  CAS  Google Scholar 

  17. JR Johansen (1993) ArticleTitleCryptogamic crusts of semiarid and arid lands of North America. J Phycol 29 140–147 Occurrence Handle10.1111/j.0022-3646.1993.00140.x

    Article  Google Scholar 

  18. JH Kaltenecker M Wicklow-Howard M Pellant (1999) Biological soil crusts: natural barriers to Bromus tectorum L. establishment in the northern Great Basin, USA. D Eldridge D Freudenberger (Eds) Proceedings of the VI International Rangeland Congress Aitkenvale Queensland, Australia 109–111

    Google Scholar 

  19. R Kouril P Ilik P Tomek J Naus A Poulícková (2001) ArticleTitleChlorophyll fluorescence temperature curve on Klebsormidium flaccidum cultivated at different temperature regimes. J Plant Physiol 158 1131–1136 Occurrence Handle1:CAS:528:DC%2BD3MXotVSqs7c%3D

    CAS  Google Scholar 

  20. CR Kuske LO Ticknor ME Miller JM Dunbar JA Davis SM Barns J Belnap (2002) ArticleTitleComparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68 1854–1863 Occurrence Handle10.1128/AEM.68.4.1854-1863.2002 Occurrence Handle1:CAS:528:DC%2BD38XivFGlur4%3D Occurrence Handle11916705

    Article  CAS  PubMed  Google Scholar 

  21. Lee, K (2003) Determination of Carbon and Nitrogen in Sediments and Particulates of Estuarine/Coastal Waters by Combustion. Technical Publication—Method 5.1.7.6. Cape Cod National Seashore, North Atlantic Coastal Laboratory, Truro

  22. J Letey (1969) Measurement of contact angle, water drop penetration time, and critical surface tension. LF DeBano J Letey (Eds) Water-Repellent Soils: University of California, Riverside May 6–10, 1968 Proceedings 43–47

    Google Scholar 

  23. HU Ling RD Seppelt (2000) Snow algae of the Windmill Islands region, adaptations to the Antarctic environment. W Davison C Howard-Williams P Broady (Eds) Antarctic Ecosystems: Models for Wider Ecological Understanding Caxton Press Christchurch, New Zealand 171–174

    Google Scholar 

  24. A Lukeovál (2001) ArticleTitleSoil algae in brown coal and lignite post-mining areas in central Europe (Czech Republic and Germany). Rest Ecol 9 341–350 Occurrence Handle10.1046/j.1526-100X.2001.94002.x

    Article  Google Scholar 

  25. W Ludwig SH Bauer M Bauer I Held G Kirchhof R Schulze I Huber S Spring A Hartmann KH Schleifer (1997) ArticleTitleDetection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153 181–190 Occurrence Handle10.1016/S0378-1097(97)00256-5 Occurrence Handle1:CAS:528:DyaK2sXltFWkt78%3D Occurrence Handle9252585

    Article  CAS  PubMed  Google Scholar 

  26. W Ludwig O Strunk S Klugbauer N Klugbauer M Weizenegger J Neumaier M Bachleitner KH Schleifer (1998) ArticleTitleBacterial phylogeny based on comparative sequence analysis. Electrophoresis 19 554–568 Occurrence Handle1:CAS:528:DyaK1cXisVentrY%3D Occurrence Handle9588802

    CAS  PubMed  Google Scholar 

  27. C McKenna-Neuman CD Maxwell JW Boulton (1996) ArticleTitleWind transport of sand surfaces crusted with photoautotrophic microorganisms. Catena 27 229–247 Occurrence Handle10.1016/0341-8162(96)00023-9

    Article  Google Scholar 

  28. National Atmospheric Deposition Program (NRSP-3)/National Trends Network (2003) NADP Program Office, Illinois State Water Survey, 2204 Griffith Dr., Champaign, IL 61820

  29. National Climatic Data Center (2003) National Oceanographic and Atmospheric Administration Climate Services Branch, Room 468, 151 Patton Avenue, Asheville, NC

  30. U Nübel F Garcia-Pichel G Muyzer (1997) ArticleTitlePCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63 3327–3332 Occurrence Handle9251225

    PubMed  Google Scholar 

  31. JL Pluis GBM de Winder (1989) ArticleTitleSpatial patterns in algae colonization of dune blowouts. Catena 16 499–506 Occurrence Handle10.1016/0341-8162(89)90031-3

    Article  Google Scholar 

  32. KR Ramanathan (2002) Ulotrichales. ICAR Monographs on Algae #6. DM John BA Whitton AJ Brook (Eds) Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae Cambridge University Press London

    Google Scholar 

  33. S Sabater T Buchaca J Cambra J Catalan H Guasch N Ivorra I Muñoz E Navarro M Real A Romani (2003) ArticleTitleStructure and function of benthic algal communities in an extremely acid river. J Phycol 39 481–489 Occurrence Handle10.1046/j.1529-8817.2003.02104.x Occurrence Handle1:CAS:528:DC%2BD3sXlsVShtrY%3D

    Article  CAS  Google Scholar 

  34. CM Santegoeds TG Ferdelman G Muyzer D de Beer (1998) ArticleTitleStructural and functional dynamics of sulfate reducing populations in bacterial biofilms. Appl Environ Microbiol 64 3731–3739 Occurrence Handle1:CAS:528:DyaK1cXms1ent74%3D Occurrence Handle9758792

    CAS  PubMed  Google Scholar 

  35. Shubert, LE, Rusu, AM, Bartok, K, Moncrieff, CB (2001) “Distribution and abundance of edaphic algae adapted to highly acidic, metal rich soils.” In: Elster, J, Seckbach, J, Vincent, WF, Lhotský, O (Eds.) Algae and Extreme Environments, Nova Hedwigia Beiheft 123:411–425

  36. Silva, PC (1982) “Chlorophycota.” In: Parker, SP (Ed.) Synopsis and Classification of Living Organisms, vol. 1, McGraw-Hill, New York, pp 133–164

  37. C Van den Hoek DG Mann HM Jahns (1995) Algae. An Introduction to Phycology Cambridge University Press Cambridge, UK

    Google Scholar 

  38. JD Wehr RG Sheath (2002) Freshwater Algae of North America: Ecology and Classification Academic Press New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Park Service, Cape Cod National Seashore. Analyses conducted by Ferran Garcia-Pichel were supported by a grant from NSF’s Biotic Surveys and Inventories Program. The authors acknowledge the services of Debra L. Nieuwenhuis of Water’s Edge Scientific LLC (Wisconsin, USA), who provided independent microscopic analyses of our samples.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S., Abed, R. & Gercia-Pichel, F. Biological Soil Crusts of Sand Dunes in Cape Cod National Seashore, Massachusetts, USA. Microb Ecol 48, 200–208 (2004). https://doi.org/10.1007/s00248-004-0254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-004-0254-9

Keywords

Navigation