Skip to main content
Log in

Effects of Ce(III) and CeO2 Nanoparticles on Soil-Denitrification Kinetics

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Cerium (Ce)-based compounds, such as CeO2 nanoparticles (NPs), have received much attention in the last several years due to their popular applications in industrial and commercial uses. Understanding the impact of CeO2 NPs on nutrient cycles, a subchronic toxicity study of CeO2 NPs on soil-denitrification process was performed as a function of particle size (33 and 78 nm), total Ce concentration (50–500 mg L−1), and speciation [Ce(IV) vs. Ce(III)]. The antimicrobial effect on the soil-denitrification process was evaluated in both steady-state and zero-order kinetic models to assess particle- and chemical-species specific toxicity. It was found that soluble Ce(III) was far more toxic than Ce(IV)O2 NPs when an equal total concentration of Ce was evaluated. Particle size-dependent toxicity, species-dependent toxicity, and concentration-dependent toxicity were all observed in this study for both the steady-state and the kinetic evaluations. Changes in physicochemical properties of Ce(IV)O2 NPs might be important in assessing the environmental fate and toxicity of NPs in aquatic and terrestrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold MC, Badireddy AR, Wiesner MR, Di Giulio RT, Meyer JN (2013) Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Arch Environ Contam Toxicol 65:224–233

    Article  CAS  Google Scholar 

  • Babu S, Velez A, Wozniak K, Szydlowska J, Seal S (2007) Electron paramagnetic study on radical scavenging properties of ceria nanoparticles. Chem Phys Lett 442:405–408

    Article  CAS  Google Scholar 

  • Balusamy B, Kandhasamy YG, Senthamizhan A, Chandrasekaran G, Subramanian MS, Tirukalikundram SK (2012) Characterization and bacterial toxicity of lanthanum oxide bulk and nanoparticles. J Rare Earths 30:1298–1302

    Article  CAS  Google Scholar 

  • Boaventura RAR, Rodrigues AE (1997) Denitrification kinetics in a rotating disk biofilm reactor. Chem Eng J 65:227–235

    Article  CAS  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  CAS  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  CAS  Google Scholar 

  • Collin B, Oostveen E, Tsyusko OV, Unrine JM (2014) Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol 48:1280–1289

    Article  CAS  Google Scholar 

  • Cornelis G, Ryan B, McLaughlin MJ, Kirby JK, Beak D, Chittleborough D (2011) Solubility and batch retention of CeO2 nanoparticles in soils. Environ Sci Technol 45:2777–2782

    Article  CAS  Google Scholar 

  • Dahle JT (2012) Master’s thesis: the effects of physicochemical properties of CeO2 nanoparticles on toxicity to soil denitrification processes. Clemson University, Clemson

  • Dahle JT, Livi K, Arai Y (2014) Effects of pH and phosphate on CeO2 nanoparticle dissolution. Chemosphere. doi:10.1016/j.chemosphere.2014.02.027

  • Dawson RN, Murphy KL (1972) The temperature dependency of biological denitrification. Water Res 6:71–83

    Article  CAS  Google Scholar 

  • Gruner S, Sehrt I, Muller GM, Zwirner A, Strunk D, Sonnichsen N (1992) Inhibition of histamine-release from human granulocytes by ions of the rare-earth elements lanthanum and cerium. Agents Actions 36:207–211

    CAS  Google Scholar 

  • He X, Kuang Y, Li Y, Zhang H, Ma Y, Bai W et al (2012) Changing exposure media can reverse the cytotoxicity of ceria nanoparticles for Escherichia coli. Nanotoxicology 6:233–240

    Article  CAS  Google Scholar 

  • Heckert EG, Karakoti AS, Seal S, Self WT (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29:2705–2709

    Article  CAS  Google Scholar 

  • Hendren CO, Mesnard X, Droge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569

    Article  CAS  Google Scholar 

  • Hoecke KV, Quik JT, Mankiewicz-Boczek J, Schamphelaere K, Elsaesser A, Van der Meeren P et al (2009) Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43:4537–4546

    Article  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  CAS  Google Scholar 

  • Institute Health Effects (2001) Evaluation of human health risk from cerium added to diesel fuel. Health Effects Institute Communication 9

  • Ivanov VK, Shcherbakov AB, Ryabokon IG, Usatenko AV, Zholobak NM, Tretyakov YD (2010) Inactivation of the nitroxyl radical by ceria nanoparticles. Dokl Chem 430:43–46

    Article  CAS  Google Scholar 

  • Jakupec MA, Unfried P, Keppler BK (2005) Pharmacological properties of cerium compounds. In: Amara SG, Bamberg E, Jahn R, Lederer WJ, Miyajima A, Murer H et al (eds) Reviews of physiology biochemistry and pharmacology. Springer-Verlag, Berlin, Heidelberg, New York, pp 101–111

  • Karakoti AS, Monteiro-Riviere NA, Aggarwal R, Davis JP, Narayan RJ, Self WT et al (2008) Nanoceria as antioxidant: synthesis and biomedical applications. JOM 60:33–37

    Article  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188:112–118

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life-cycle releases of engineered nanomaterials. J Nanopart Res 15:1692–1704

    Article  Google Scholar 

  • Kuang YS, He X, Zhang ZY, Li YY, Zhang HF, Ma YH et al (2011) Comparison study on the antibacterial activity of nano- or bulk-cerium oxide. J Nanosci Nanotechnol 11:4103–4108

    Article  CAS  Google Scholar 

  • Lead JR, Smith E (2009) Environmental and human health impacts of nanotechnology. Wiley, Chichester

    Book  Google Scholar 

  • Limbach LK, Bereiter R, Mueller E, Krebs R, Gaelli R, Stark WJ (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42:5828–5833

    Article  CAS  Google Scholar 

  • Lu K, Zhang ZY, He XA, Ma YH, Zhou KB, Zhang HF et al (2010) Bioavailability and distribution and of ceria nanoparticles in simulated aquatic ecosystems, quantification with a radiotracer technique. J Nanosci Nanotechnol 10:8658–8662

    Article  CAS  Google Scholar 

  • Lubick N (2008) Nanosilver toxicity: ions, nanoparticles—or both? Environ Sci Technol 42:8617

    Article  CAS  Google Scholar 

  • Mahendra S, Zhu H, Colvin VL, Alvarez PJ (2008) Quantum dot weathering results in microbial toxicity. Environ Sci Technol 42:9424–9430

    Article  CAS  Google Scholar 

  • Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne N, Katta A et al (2011) Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague–Dawley rats. Int J Nanomed 6:2327–2335

    Article  CAS  Google Scholar 

  • Napierska D, Thomassen LCT, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M et al (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853

    Article  CAS  Google Scholar 

  • Palasz A, Czekaj P (2000) Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim Pol 47:1107–1114

    CAS  Google Scholar 

  • Palmberg C, Tuomo N (2006) Industrial renewal and growth through nanotechnology? An overview with focus on Finland. ETLA Discussion Papers, The Research Institute of the Finnish Economy, number 1020

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949

    Article  CAS  Google Scholar 

  • Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu BH et al (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76:7981–7989

    Article  CAS  Google Scholar 

  • Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS et al (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 46:2736–2738

    Article  CAS  Google Scholar 

  • Rodea-Palomares I, Boltes K, Fernandez-Pinas F, Leganes F, Garcia-Calvo E, Santiago J et al (2011) Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol Sci 119:135–145

    Article  CAS  Google Scholar 

  • Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR et al (2010) Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 7:50–60

  • Roh J, Park Y, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29:167–172

    Article  CAS  Google Scholar 

  • Rzigalinski BA, Bailey D, Chow L, Kuiry SC, Patil S, Merchant S et al (2003) Cerium oxide nanoparticles increase the lifespan of cultured brain cells and protect against free radical and mechanical trauma. FASEB J 17:A606

    Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M et al (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency, USEPA (2007) Protection of environment: standards for the use or disposal of sewage sludge—land application: pollutant limits, vol 40, pp 9–11

  • United States Environmental Protection Agency (2009) Toxicological review of cerium oxide and cerium compounds. USEPA, Washington, DC

    Google Scholar 

  • van Haandel AC, Ekama GA, Marais GvR (1981) The activated sludge process. 3. Single sludge denitrification. Water Res 15:1135–1152

    Article  Google Scholar 

  • VandeVoort AR, Arai Y (2012) Effect of silver nanoparticles on soil denitrification kinetics. Ind Biotechnol 8:358–364

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the 2011 Agriculture and Food Research Initiative Competitive Grants Program, Nanotechnology for Agriculture and Food Systems (Grant No. 2011-03580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Arai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahle, J.T., Arai, Y. Effects of Ce(III) and CeO2 Nanoparticles on Soil-Denitrification Kinetics. Arch Environ Contam Toxicol 67, 474–482 (2014). https://doi.org/10.1007/s00244-014-0031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0031-9

Keywords

Navigation