Skip to main content

Advertisement

Log in

Effects of terbinafine and itraconazole on the pharmacokinetics of orally administered tramadol

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

Tramadol is widely used for acute, chronic, and neuropathic pain. Its primary active metabolite is O-desmethyltramadol (M1), which is mainly accountable for the μ-opioid receptor-related analgesic effect. Tramadol is metabolized to M1 mainly by cytochrome P450 (CYP)2D6 enzyme and to other metabolites by CYP3A4 and CYP2B6. We investigated the possible interaction of tramadol with the antifungal agents terbinafine (CYP2D6 inhibitor) and itraconazole (CYP3A4 inhibitor).

Methods

We used a randomized placebo-controlled crossover study design with 12 healthy subjects, of which 8 were extensive and 4 were ultrarapid CYP2D6 metabolizers. On the pretreatment day 4 with terbinafine (250 mg once daily), itraconazole (200 mg once daily) or placebo, subjects were given tramadol 50 mg orally. Plasma concentrations of tramadol and M1 were determined over 48 h and some pharmacodynamic effects over 12 h. Pharmacokinetic variables were calculated using standard non-compartmental methods.

Results

Terbinafine increased the area under plasma concentration–time curve (AUC0-∞) of tramadol by 115 % and decreased the AUC0-∞ of M1 by 64 % (P < 0.001). Terbinafine increased the peak concentration (C max) of tramadol by 53 % (P < 0.001) and decreased the C max of M1 by 79 % (P < 0.001). After terbinafine pretreatment the elimination half-life of tramadol and M1 were increased by 48 and 50 %, respectively (P < 0.001). Terbinafine reduced subjective drug effect of tramadol (P < 0.001). Itraconazole had minor effects on tramadol pharmacokinetics.

Conclusions

Terbinafine may reduce the opioid effect of tramadol and increase the risk of its monoaminergic adverse effects. Itraconazole has no meaningful interaction with tramadol in subjects who have functional CYP2D6 enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moore RA, McQuay HJ (1997) Single-patient data meta-analysis of 3453 postoperative patients: oral tramadol versus placebo, codeine and combination analgesics. Pain 69(3):287–294

    Article  CAS  PubMed  Google Scholar 

  2. Harati Y, Gooch C, Swenson M, Edelman S, Greene D, Raskin P, Donofrio P, Cornblath D, Sachdeo R, Siu CO, Kamin M (1998) Double-blind randomized trial of tramadol for the treatment of the pain of diabetic neuropathy. Neurology 50(6):1842–1846

    Article  CAS  PubMed  Google Scholar 

  3. Boureau F, Legallicier P, Kabir-Ahmadi M (2003) Tramadol in post-herpetic neuralgia: a randomized, double-blind, placebo-controlled trial. Pain 104(1–2):323–331

    Article  CAS  PubMed  Google Scholar 

  4. Malonne H, Coffiner M, Sonet B, Sereno A, Vanderbist F (2004) Efficacy and tolerability of sustained-release tramadol in the treatment of symptomatic osteoarthritis of the hip or knee: a multicenter, randomized, double-blind, placebo-controlled study. Clin Ther 26(11):1774–1782. doi:10.1016/j.clinthera.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  5. Grond S, Sablotzki A (2004) Clinical pharmacology of tramadol. Clin Pharmacokinet 43(13):879–923

    Article  CAS  PubMed  Google Scholar 

  6. Gillen C, Haurand M, Kobelt DJ, Wnendt S (2000) Affinity, potency and efficacy of tramadol and its metabolites at the cloned human mu-opioid receptor. Naunyn Schmiedebergs Arch Pharmacol 362(2):116–121

    Article  CAS  PubMed  Google Scholar 

  7. Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL, Jacoby HI, Selve N (1993) Complementary and synergistic antinociceptive interaction between the enantiomers of tramadol. J Pharmacol Exp Ther 267(1):331–340

    CAS  PubMed  Google Scholar 

  8. Saarikoski T, Saari TI, Hagelberg NM, Neuvonen M, Neuvonen PJ, Scheinin M, Olkkola KT, Laine K (2013) Rifampicin markedly decreases the exposure to oral and intravenous tramadol. Eur J Clin Pharmacol 69(6):1293–1301. doi:10.1007/s00228-012-1460-x

    Article  CAS  PubMed  Google Scholar 

  9. Lintz W, Barth H, Osterloh G, Schmidt-Bothelt E (1986) Bioavailability of enteral tramadol formulations. 1st communication: capsules. Arzneimittelforschung 36(8):1278–1283

    CAS  PubMed  Google Scholar 

  10. Wu WN, McKown LA, Liao S (2002) Metabolism of the analgesic drug ULTRAM (tramadol hydrochloride) in humans: API-MS and MS/MS characterization of metabolites. Xenobiotica 32(5):411–425. doi:10.1080/00498250110113230

    Article  CAS  PubMed  Google Scholar 

  11. Subrahmanyam V, Renwick AB, Walters DG, Young PJ, Price RJ, Tonelli AP, Lake BG (2001) Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos 29(8):1146–1155

    CAS  PubMed  Google Scholar 

  12. Poulsen L, Arendt-Nielsen L, Brosen K, Sindrup SH (1996) The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 60(6):636–644. doi:10.1016/S0009-9236(96)90211-8

    Article  CAS  PubMed  Google Scholar 

  13. Abdel-Rahman SM, Nahata MC (1997) Oral terbinafine: a new antifungal agent. Ann Pharmacother 31(4):445–456

    CAS  PubMed  Google Scholar 

  14. Ahonen J, Olkkola KT, Neuvonen PJ (1995) Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers. Br J Clin Pharmacol 40(3):270–272

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Abdel-Rahman SM, Gotschall RR, Kauffman RE, Leeder JS, Kearns GL (1999) Investigation of terbinafine as a CYP2D6 inhibitor in vivo. Clin Pharmacol Ther 65(5):465–472. doi:10.1016/S0009-9236(99)70065-2

    Article  CAS  PubMed  Google Scholar 

  16. Hynninen VV, Olkkola KT, Bertilsson L, Kurkinen K, Neuvonen PJ, Laine K (2008) Effect of terbinafine and voriconazole on the pharmacokinetics of the antidepressant venlafaxine. Clin Pharmacol Ther 83(2):342–348. doi:10.1038/sj.clpt.6100311

    Article  PubMed  Google Scholar 

  17. Olkkola KT, Ahonen J, Neuvonen PJ (1996) The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 82(3):511–516

    CAS  PubMed  Google Scholar 

  18. Kaukonen KM, Olkkola KT, Neuvonen PJ (1997) Itraconazole increases plasma concentrations of quinidine. Clin Pharmacol Ther 62(5):510–517. doi:10.1016/S0009-9236(97)90046-1

    Article  CAS  PubMed  Google Scholar 

  19. Walsky RL, Astuccio AV, Obach RS (2006) Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6. J Clin Pharmacol 46(12):1426–1438. doi:10.1177/0091270006293753

    Article  CAS  PubMed  Google Scholar 

  20. Tirkkonen T, Laine K (2004) Drug interactions with the potential to prevent prodrug activation as a common source of irrational prescribing in hospital inpatients. Clin Pharmacol Ther 76(6):639–647. doi:10.1016/j.clpt.2004.08.017

    Article  CAS  PubMed  Google Scholar 

  21. Michna E, Ross EL, Hynes WL, Nedeljkovic SS, Soumekh S, Janfaza D, Palombi D, Jamison RN (2004) Predicting aberrant drug behavior in patients treated for chronic pain: importance of abuse history. J Pain Symptom Manag 28(3):250–258. doi:10.1016/j.jpainsymman.2004.04.007

    Article  Google Scholar 

  22. Madani S, Barilla D, Cramer J, Wang Y, Paul C (2002) Effect of terbinafine on the pharmacokinetics and pharmacodynamics of desipramine in healthy volunteers identified as cytochrome P450 2D6 (CYP2D6) extensive metabolizers. J Clin Pharmacol 42(11):1211–1218

    Article  CAS  PubMed  Google Scholar 

  23. Stone BM (1984) Pencil and paper tests—sensitivity to psychotropic drugs. Br J Clin Pharmacol 18(Suppl 1):15S–20S

    Article  PubMed Central  PubMed  Google Scholar 

  24. Cogan DG (1941) Simplified entoptic pupillometer. Am J Ophthalmol 24:1431–1433

    Article  Google Scholar 

  25. Hannington-Kiff JG (1970) Measurement of recovery from outpatient general anaesthesia with a simple ocular test. Br Med J 3(5715):132–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Grach M, Massalha W, Pud D, Adler R, Eisenberg E (2004) Can coadministration of oxycodone and morphine produce analgesic synergy in humans? An experimental cold pain study. Br J Clin Pharmacol 58(3):235–242. doi:10.1111/j.1365-2125.2004.02141.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kharasch ED, Hoffer C, Whittington D, Sheffels P (2003) Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine. Clin Pharmacol Ther 74(6):543–554. doi:10.1016/j.clpt.2003.08.011

    Article  CAS  PubMed  Google Scholar 

  28. Kharasch ED, Hoffer C, Altuntas TG, Whittington D (2004) Quinidine as a probe for the role of p-glycoprotein in the intestinal absorption and clinical effects of fentanyl. J Clin Pharmacol 44(3):224–233. doi:10.1177/0091270003262075

    Article  CAS  PubMed  Google Scholar 

  29. Kalvass JC, Olson ER, Pollack GM (2007) Pharmacokinetics and pharmacodynamics of alfentanil in P-glycoprotein-competent and P-glycoprotein-deficient mice: P-glycoprotein efflux alters alfentanil brain disposition and antinociception. Drug Metab Dispos 35(3):455–459. doi:10.1124/dmd.106.011445

    Article  CAS  PubMed  Google Scholar 

  30. DuBuske LM (2005) The role of P-glycoprotein and organic anion-transporting polypeptides in drug interactions. Drug Saf 28(9):789–801

    Article  CAS  PubMed  Google Scholar 

  31. Kanaan M, Daali Y, Dayer P, Desmeules J (2009) Uptake/efflux transport of tramadol enantiomers and O-desmethyl-tramadol: focus on P-glycoprotein. Basic Clin Pharmacol Toxicol 105(3):199–206. doi:10.1111/j.1742-7843.2009.00428.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tzvetkov MV, Saadatmand AR, Lotsch J, Tegeder I, Stingl JC, Brockmoller J (2011) Genetically polymorphic OCT1: another piece in the puzzle of the variable pharmacokinetics and pharmacodynamics of the opioidergic drug tramadol. Clin Pharmacol Ther 90(1):143–150. doi:10.1038/clpt.2011.56

    Article  CAS  PubMed  Google Scholar 

  33. Stamer UM, Musshoff F, Kobilay M, Madea B, Hoeft A, Stuber F (2007) Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther 82(1):41–47. doi:10.1038/sj.clpt.6100152

    Article  CAS  PubMed  Google Scholar 

  34. Hagelberg NM, Saarikoski T, Saari TI, Neuvonen M, Neuvonen PJ, Turpeinen M, Scheinin M, Laine K, Olkkola KT (2013) Ticlopidine inhibits both O-demethylation and renal clearance of tramadol, increasing the exposure to it, but itraconazole has no marked effect on the ticlopidine-tramadol interaction. Eur J Clin Pharmacol 69(4):867–875. doi:10.1007/s00228-012-1433-0

    Article  PubMed  Google Scholar 

  35. Gronlund J, Saari T, Hagelberg N, Martikainen IK, Neuvonen PJ, Olkkola KT, Laine K (2010) Effect of telithromycin on the pharmacokinetics and pharmacodynamics of oral oxycodone. J Clin Pharmacol 50(1):101–108. doi:10.1177/0091270009336444

    Article  CAS  PubMed  Google Scholar 

  36. Hughes CW, Petty F, Sheikha S, Kramer GL (1996) Whole-blood serotonin in children and adolescents with mood and behavior disorders. Psychiatry Res 65(2):79–95

    Article  CAS  PubMed  Google Scholar 

  37. Epperson N, Czarkowski KA, Ward-O’Brien D, Weiss E, Gueorguieva R, Jatlow P, Anderson GM (2001) Maternal sertraline treatment and serotonin transport in breast-feeding mother-infant pairs. Am J Psychiatry 158(10):1631–1637

    Article  CAS  PubMed  Google Scholar 

  38. Maurer-Spurej E, Pittendreigh C, Solomons K (2004) The influence of selective serotonin reuptake inhibitors on human platelet serotonin. Thromb Haemost 91(1):119–128. doi:10.1267/THRO04010119

    CAS  PubMed  Google Scholar 

  39. Enggaard TP, Poulsen L, Arendt-Nielsen L, Brosen K, Ossig J, Sindrup SH (2006) The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth Analg 102(1):146–150. doi:10.1213/01.ane.0000189613.61910.32

    Article  CAS  PubMed  Google Scholar 

  40. Desmeules J, Gascon MP, Dayer P, Magistris M (1991) Impact of environmental and genetic factors on codeine analgesia. Eur J Clin Pharmacol 41(1):23–26. doi:10.1007/BF00280101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Elina Kahra (medical laboratory technologist, Clinical Pharmacology, TYKSLAB, Hospital District of Southwest Finland, Turku, Finland) and Mr. Jouko Laitila laboratory technician, Clinical Pharmacology, University of Helsinki, Helsinki, Finland) for their skillful technical assistance.

Funding

This study received funding from theTurku University Hospital research fund EVO 13821, Turku, Finland, and Helsinki University Central Hospital Research Fund, Helsinki, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuukka Saarikoski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saarikoski, T., Saari, T.I., Hagelberg, N.M. et al. Effects of terbinafine and itraconazole on the pharmacokinetics of orally administered tramadol. Eur J Clin Pharmacol 71, 321–327 (2015). https://doi.org/10.1007/s00228-014-1799-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-014-1799-2

Keywords

Navigation