Skip to main content

Advertisement

Log in

Rifampicin markedly decreases the exposure to oral and intravenous tramadol

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Tramadol is mainly metabolized by the cytochrome P450 (CYP) 2D6, CYP2B6 and CYP3A4 enzymes. The aim of this study was to evaluate the effect of enzyme induction with rifampicin on the pharmacokinetics and pharmacodynamics of oral and intravenous tramadol.

Methods

This was a randomized placebo-controlled crossover study design with 12 healthy subjects. After pretreatment for 5 days with rifampicin (600 mg once daily) or placebo, subjects were given tramadol either 50 mg intravenously or 100 mg orally. Plasma concentrations of tramadol and its active main metabolite O-desmethyltramadol (M1) were determined over 48 h. Analgesic and behavioral effects and whole blood 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) concentrations were measured.

Results

Rifampicin reduced the mean area under the time–concentration curve (AUC0-∞) of intravenously administered tramadol by 43 % and that of M1 by 58 % (P < 0.001); it reduced the AUC0-∞ of oral tramadol by 59 % and that of M1 by 54 % (P < 0.001). Rifampicin increased the clearance of intravenous tramadol by 67 % (P < 0.001). Bioavailability of oral tramadol was reduced by rifampicin from 66 to 49 % (P = 0.002). The pharmacological effects of tramadol or whole blood serotonin concentrations were not influenced by pretreatment with rifampicin.

Conclusions

Rifampicin markedly decreased the exposure to tramadol and M1 after both oral and intravenous administration. Therefore, rifampicin and other potent enzyme inducers may have a clinically important interaction with tramadol regardless of the route of its administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Finnish Medicines Agency (FIMEA) (2010) Finnish Statistics on Medicines. Available at: http://raportit.nam.fi/raportit/kulutus/ev_laakekulutus.pdf. Accessed 7 Mar 2012

  2. Lintz W, Barth H, Osterloh G, Schmidt-Bothelt E (1986) Bioavailability of enteral tramadol formulations. 1st communication: capsules. Arzneimittelforschung 36(8):1278–1283

    PubMed  CAS  Google Scholar 

  3. Gillen C, Haurand M, Kobelt DJ, Wnendt S (2000) Affinity, potency and efficacy of tramadol and its metabolites at the cloned human mu-opioid receptor. Naunyn Schmiedebergs Arch Pharmacol 362(2):116–121

    Article  PubMed  CAS  Google Scholar 

  4. Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL (1992) Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J Pharmacol Exp Ther 260(1):275–285

    PubMed  CAS  Google Scholar 

  5. Wu WN, McKown LA, Liao S (2002) Metabolism of the analgesic drug ULTRAM (tramadol hydrochloride) in humans: API-MS and MS/MS characterization of metabolites. Xenobiotica 32(5):411–425. doi:10.1080/00498250110113230

    Article  PubMed  CAS  Google Scholar 

  6. Subrahmanyam V, Renwick AB, Walters DG, Young PJ, Price RJ, Tonelli AP, Lake BG (2001) Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos 29(8):1146–1155

    PubMed  CAS  Google Scholar 

  7. Poulsen L, Arendt-Nielsen L, Brosen K, Sindrup SH (1996) The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 60(6):636–644. doi:10.1016/S0009-9236(96)90211-8

    Article  PubMed  CAS  Google Scholar 

  8. Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivisto KT (2003) Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet 42(9):819–850

    Article  PubMed  CAS  Google Scholar 

  9. Nieminen TH, Hagelberg NM, Saari TI, Pertovaara A, Neuvonen M, Laine K, Neuvonen PJ, Olkkola KT (2009) Rifampin greatly reduces the plasma concentrations of intravenous and oral oxycodone. Anesthesiology 110(6):1371–1378. doi:10.1097/ALN.0b013e31819faa54

    Article  PubMed  CAS  Google Scholar 

  10. Loboz KK, Gross AS, Williams KM, Liauw WS, Day RO, Blievernicht JK, Zanger UM, McLachlan AJ (2006) Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin Pharmacol Ther 80(1):75–84. doi:10.1016/j.clpt.2006.03.010

    Article  PubMed  CAS  Google Scholar 

  11. Fattinger K, Cattori V, Hagenbuch B, Meier PJ, Stieger B (2000) Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2. Hepatology 32(1):82–86. doi:10.1053/jhep.2000.8539

    Article  PubMed  CAS  Google Scholar 

  12. Niemi M, Pasanen MK, Neuvonen PJ (2011) Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 63(1):157–181. doi:10.1124/pr.110.002857

    Article  PubMed  CAS  Google Scholar 

  13. Michna E, Ross EL, Hynes WL, Nedeljkovic SS, Soumekh S, Janfaza D, Palombi D, Jamison RN (2004) Predicting aberrant drug behavior in patients treated for chronic pain: importance of abuse history. J Pain Symptom Manage 28(3):250–258. doi:10.1016/j.jpainsymman.2004.04.007

    Article  PubMed  Google Scholar 

  14. Patel BN, Sharma N, Sanyal M, Shrivastav PS (2009) An accurate, rapid and sensitive determination of tramadol and its active metabolite O-desmethyltramadol in human plasma by LC-MS/MS. J Pharm Biomed Anal 49(2):354–366. doi:10.1016/j.jpba.2008.10.030

    Article  PubMed  CAS  Google Scholar 

  15. Sistonen J, Fuselli S, Levo A, Sajantila A (2005) CYP2D6 genotyping by a multiplex primer extension reaction. Clin Chem 51(7):1291–1295. doi:10.1373/clinchem.2004.046466

    Article  PubMed  CAS  Google Scholar 

  16. Anderson GM, Young JG, Cohen DJ, Schlicht KR, Patel N (1981) Liquid-chromatographic determination of serotonin and tryptophan in whole blood and plasma. Clin Chem 27(5):775–776

    PubMed  CAS  Google Scholar 

  17. Scheinin M, Karhuvaara S, Ojala-Karlsson P, Kallio A, Koulu M (1991) Plasma 3,4-dihydroxyphenylglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG) are insensitive indicators of alpha 2-adrenoceptor mediated regulation of norepinephrine release in healthy human volunteers. Life Sci 49(1):75–84

    Article  PubMed  CAS  Google Scholar 

  18. Stone BM (1984) Pencil and paper tests–sensitivity to psychotropic drugs. Br J Clin Pharmacol 18[Suppl 1]:15S–20S

    Article  PubMed  Google Scholar 

  19. Cogan DG (1941) Simplified entoptic pupillometer. Am J Ophthalmol 24:1431–1433

    Google Scholar 

  20. Hannington-Kiff JG (1970) Measurement of recovery from outpatient general anaesthesia with a simple ocular test. Br Med J 3(5715):132–135

    Article  PubMed  CAS  Google Scholar 

  21. Grach M, Massalha W, Pud D, Adler R, Eisenberg E (2004) Can coadministration of oxycodone and morphine produce analgesic synergy in humans? An experimental cold pain study. Br J Clin Pharmacol 58(3):235–242. doi:10.1111/j.1365-2125.2004.02141.x

    Article  PubMed  CAS  Google Scholar 

  22. Laugesen S, Enggaard TP, Pedersen RS, Sindrup SH, Brosen K (2005) Paroxetine, a cytochrome P450 2D6 inhibitor, diminishes the stereoselective O-demethylation and reduces the hypoalgesic effect of tramadol. Clin Pharmacol Ther 77(4):312–323

    Article  PubMed  CAS  Google Scholar 

  23. Caraco Y, Sheller J, Wood AJ (1997) Pharmacogenetic determinants of codeine induction by rifampin: the impact on codeine’s respiratory, psychomotor and miotic effects. J Pharmacol Exp Ther 281(1):330–336

    PubMed  CAS  Google Scholar 

  24. Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT (2005) Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Basic Clin Pharmacol Toxicol 97(4):249–256. doi:10.1111/j.1742-7843.2005.pto_157.x

    Article  PubMed  CAS  Google Scholar 

  25. Bidstrup TB, Stilling N, Damkier P, Scharling B, Thomsen MS, Brosen K (2004) Rifampicin seems to act as both an inducer and an inhibitor of the metabolism of repaglinide. Eur J Clin Pharmacol 60(2):109–114. doi:10.1007/s00228-004-0746-z

    Article  PubMed  CAS  Google Scholar 

  26. DuBuske LM (2005) The role of P-glycoprotein and organic anion-transporting polypeptides in drug interactions. Drug Saf 28(9):789–801

    Article  PubMed  CAS  Google Scholar 

  27. Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, Kroemer HK (1999) The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 104(2):147–153. doi:10.1172/JCI6663

    Article  PubMed  CAS  Google Scholar 

  28. Kharasch ED, Hoffer C, Whittington D, Sheffels P (2003) Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine. Clin Pharmacol Ther 74(6):543–554. doi:10.1016/j.clpt.2003.08.011

    Article  PubMed  CAS  Google Scholar 

  29. Kharasch ED, Hoffer C, Altuntas TG, Whittington D (2004) Quinidine as a probe for the role of p-glycoprotein in the intestinal absorption and clinical effects of fentanyl. J Clin Pharmacol 44(3):224–233. doi:10.1177/0091270003262075

    Article  PubMed  CAS  Google Scholar 

  30. Kalvass JC, Olson ER, Pollack GM (2007) Pharmacokinetics and pharmacodynamics of alfentanil in P-glycoprotein-competent and P-glycoprotein-deficient mice: P-glycoprotein efflux alters alfentanil brain disposition and antinociception. Drug Metab Dispos 35(3):455–459. doi:10.1124/dmd.106.011445

    Article  PubMed  CAS  Google Scholar 

  31. Kanaan M, Daali Y, Dayer P, Desmeules J (2009) Uptake/efflux transport of tramadol enantiomers and O-desmethyl-tramadol: focus on P-glycoprotein. Basic Clin Pharmacol Toxicol 105(3):199–206. doi:10.1111/j.1742-7843.2009.00428.x

    Article  PubMed  CAS  Google Scholar 

  32. Choi MK, Jin QR, Choi YL, Ahn SH, Bae MA, Song IS (2011) Inhibitory effects of ketoconazole and rifampin on OAT1 and OATP1B1 transport activities: considerations on drug-drug interactions. Biopharm Drug Dispos 32(3):175–184. doi:10.1002/bdd.749

    Article  PubMed  CAS  Google Scholar 

  33. Fliegert F, Kurth B, Gohler K (2005) The effects of tramadol on static and dynamic pupillometry in healthy subjects–the relationship between pharmacodynamics, pharmacokinetics and CYP2D6 metaboliser status. Eur J Clin Pharmacol 61(4):257–266. doi:10.1007/s00228-005-0920-y

    Article  PubMed  CAS  Google Scholar 

  34. Pedersen RS, Damkier P, Brosen K (2006) Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers. Eur J Clin Pharmacol 62(7):513–521. doi:10.1007/s00228-006-0135-x

    Article  PubMed  CAS  Google Scholar 

  35. Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL, Jacoby HI, Selve N (1993) Complementary and synergistic antinociceptive interaction between the enantiomers of tramadol. J Pharmacol Exp Ther 267(1):331–340

    PubMed  CAS  Google Scholar 

  36. Hughes CW, Petty F, Sheikha S, Kramer GL (1996) Whole-blood serotonin in children and adolescents with mood and behavior disorders. Psychiatry Res 65(2):79–95

    Article  PubMed  CAS  Google Scholar 

  37. Epperson N, Czarkowski KA, Ward-O’Brien D, Weiss E, Gueorguieva R, Jatlow P, Anderson GM (2001) Maternal sertraline treatment and serotonin transport in breast-feeding mother-infant pairs. Am J Psychiatry 158(10):1631–1637

    Article  PubMed  CAS  Google Scholar 

  38. Maurer-Spurej E, Pittendreigh C, Solomons K (2004) The influence of selective serotonin reuptake inhibitors on human platelet serotonin. Thromb Haemost 91(1):119–128. doi:10.1267/THRO04010119

    PubMed  CAS  Google Scholar 

  39. Tirkkonen T, Laine K (2004) Drug interactions with the potential to prevent prodrug activation as a common source of irrational prescribing in hospital inpatients. Clin Pharmacol Ther 76(6):639–647. doi:10.1016/j.clpt.2004.08.017

    Article  PubMed  CAS  Google Scholar 

  40. Ucar M, Neuvonen M, Luurila H, Dahlqvist R, Neuvonen PJ, Mjorndal T (2004) Carbamazepine markedly reduces serum concentrations of simvastatin and simvastatin acid. Eur J Clin Pharmacol 59(12):879–882. doi:10.1007/s00228-003-0700-5

    Article  PubMed  CAS  Google Scholar 

  41. Kyrklund C, Backman JT, Kivisto KT, Neuvonen M, Laitila J, Neuvonen PJ (2000) Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 68(6):592–597. doi:10.1067/mcp.2000.111414

    Article  PubMed  CAS  Google Scholar 

  42. Fromm MF, Eckhardt K, Li S, Schanzle G, Hofmann U, Mikus G, Eichelbaum M (1997) Loss of analgesic effect of morphine due to coadministration of rifampin. Pain 72(1–2):261–267

    Article  PubMed  CAS  Google Scholar 

  43. McCance-Katz EF, Moody DE, Prathikanti S, Friedland G, Rainey PM (2011) Rifampin, but not rifabutin, may produce opiate withdrawal in buprenorphine-maintained patients. Drug Alcohol Depend 118(2–3):326–334. doi:10.1016/j.drugalcdep.2011.04.013

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Elina Kahra (medical laboratory technologist, Clinical Pharmacology, TYKSLAB, Hospital District of Southwest Finland, Turku, Finland) for skillful technical assistance.

Funding

Turku University Hospital research fund EVO 13821, Turku, Finland

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuukka Saarikoski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saarikoski, T., Saari, T.I., Hagelberg, N.M. et al. Rifampicin markedly decreases the exposure to oral and intravenous tramadol. Eur J Clin Pharmacol 69, 1293–1301 (2013). https://doi.org/10.1007/s00228-012-1460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-012-1460-x

Keywords

Navigation