Skip to main content

Advertisement

Log in

Ticlopidine inhibits both O-demethylation and renal clearance of tramadol, increasing the exposure to it, but itraconazole has no marked effect on the ticlopidine-tramadol interaction

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We assessed possible drug interactions of tramadol given concomitantly with the potent CYP2B6 inhibitor ticlopidine, alone or together with the potent CYP3A4 and P-glycoprotein inhibitor itraconazole.

Methods

In a randomized, placebo-controlled cross-over study, 12 healthy subjects ingested 50 mg of tramadol after 4 days of pretreatment with either placebo, ticlopidine (250 mg twice daily) or ticlopidine plus itraconazole (200 mg once daily). Plasma and urine concentrations of tramadol and its active metabolite O-desmethyltramadol (M1) were monitored over 48 h and 24 h, respectively.

Results

Ticlopidine increased the mean area under the plasma concentration-time curve (AUC0-∞) of tramadol by 2.0-fold (90 % confidence interval (CI) 1.6–2.4; p < 0.001) and Cmax by 1.4-fold (p < 0.001), and reduced its oral and renal clearance (p < 0.01). Ticlopidine reduced the AUC0-3 of M1 (p < 0.001) and the ratio of the AUC0-∞ of M1 to that of tramadol, but did not influence the AUC0-∞ of M1. Tramadol or M1 pharmacokinetics did not differ between the ticlopidine alone and ticlopidine plus itraconazole phases.

Conclusions

Ticlopidine increased exposure to tramadol, reduced its renal clearance and inhibited the formation of M1, most likely via inhibition of CYP2B6 and/or CYP2D6. The addition of itraconazole to ticlopidine did not modify the outcome of the drug interaction. Concomitant clinical use of ticlopidine and tramadol may enhance the risk of serotonergic effects, especially when higher doses of tramadol are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moore RA, McQuay HJ (1997) Single-patient data meta-analysis of 3453 postoperative patients: oral tramadol versus placebo, codeine and combination analgesics. Pain 69:287–294

    Article  PubMed  CAS  Google Scholar 

  2. Harati Y, Gooch C, Swenson M, Edelman S, Greene D, Raskin P, Donofrio P, Cornblath D, Sachdeo R, Siu CO, Kamin M (1998) Double-blind randomized trial of tramadol for the treatment of the pain of diabetic neuropathy. Neurology 50:1842–1846

    Article  PubMed  CAS  Google Scholar 

  3. Boureau F, Legallicier P, Kabir-Ahmadi M (2003) Tramadol in post-herpetic neuralgia: a randomized, double-blind, placebo-controlled trial. Pain 104:323–331

    Article  PubMed  CAS  Google Scholar 

  4. Malonne H, Coffiner M, Sonet B, Sereno A, Vanderbist F (2004) Efficacy and tolerability of sustained-release tramadol in the treatment of symptomatic osteoarthritis of the hip or knee: a multicenter, randomized, double-blind, placebo-controlled study. Clin Ther 26:1774–1782

    Article  PubMed  CAS  Google Scholar 

  5. Attal N, Cruccu G, Baron R, Haanpää M, Hansson P, Jensen TS, Nurmikko T (2010) EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol 17:1113–1123

    Article  PubMed  CAS  Google Scholar 

  6. Dworkin RH, O’Connor AB, Audette J, Baron R, Gourlay GK, Haanpää ML, Kent JL, Krane EJ, Lebel AA, Levy RM, Mackey SC, Mayer J, Miaskowski C, Raja SN, Rice AS, Schmader KE, Stacey B, Stanos S, Treede RD, Turk DC, Walco GA, Wells CD (2010) Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc 85:S3–S14

    Article  PubMed  CAS  Google Scholar 

  7. Haanpää ML, Gourlay GK, Kent JL, Miaskowski C, Raja SN, Schmader KE, Wells CD (2010) Treatment considerations for patients with neuropathic pain and other medical comorbidities. Rev Mayo Clin Proc 85:S15–S25

    Article  Google Scholar 

  8. Roughead EE, McDermott B, Gilbert AL (2007) Antidepressants: prevalence of duplicate therapy and avoidable drug interactions in Australian veterans. Aust N Z J Psychiatry 41:366–370

    Article  PubMed  Google Scholar 

  9. Tirkkonen T, Laine K (2004) Drug interactions with the potential to prevent prodrug activation as a common source of irrational prescribing in hospital inpatients. Clin Pharmacol Ther 76:639–647

    Article  PubMed  CAS  Google Scholar 

  10. Lintz W, Barth H, Osterloh G, Schmidt-Böthelt E (1986) Bioavailability of enteral tramadol formulations. 1st communication: capsules. Arzneimittelforschung 36:1278–1283

    PubMed  CAS  Google Scholar 

  11. Paar WD, Frankus P, Dengler HJ (1992) The metabolism of tramadol by human liver microsomes. Clin Investig 70:708–710

    Article  PubMed  CAS  Google Scholar 

  12. Poulsen L, Arendt-Nielsen L, Brøsen K, Sindrup SH (1996) The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 60:636–644

    Article  PubMed  CAS  Google Scholar 

  13. Paar WD, Poche S, Gerloff J, Dengler HJ (1997) Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol 53:235–239

    Article  PubMed  CAS  Google Scholar 

  14. Subrahmanyam V, Renwick AB, Walters DG, Young PJ, Price RJ, Tonelli AP, Lake BG (2001) Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos 29:1146–1155

    PubMed  CAS  Google Scholar 

  15. Wu WN, McKown LA, Liao S (2002) Metabolism of the analgesic drug ULTRAM (tramadol hydrochloride) in humans: API-MS and MS/MS characterization of metabolites. Xenobiotica 32:411–425

    Article  PubMed  CAS  Google Scholar 

  16. Lintz W, Erlacin S, Francus E, Uragg H (1981) Biotransformation of tramadol in man and animal. Arzneimittelforschung 31:1932–1943

    PubMed  CAS  Google Scholar 

  17. Laugesen S, Enggaard TP, Pedersen RS, Sindrup SH, Brøsen K (2005) Paroxetine, a cytochrome P450 2D6 inhibitor, diminishes the stereoselective O-demethylation and reduces the hypoalgesic effect of tramadol. Clin Pharmacol Ther 77:312–323

    Article  PubMed  CAS  Google Scholar 

  18. Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL (1992) Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J Pharmacol Exp Ther 260:275–285

    PubMed  CAS  Google Scholar 

  19. Gillen C, Haurand M, Kobelt DJ, Wnendt S (2000) Affinity, potency and efficacy of tramadol and its metabolites at the cloned human μ-opioid receptor Naunyn-Schmiedeberg’s. Arch Pharmacol 362:116–121

    Article  CAS  Google Scholar 

  20. Driessen B, Reimann W (1992) Interaction of the central analgesic, tramadol, with the uptake and release of 5-hydroxytryptamine in the rat brain in vitro. Br J Pharmacol 105:147–151

    Article  PubMed  CAS  Google Scholar 

  21. Driessen B, Reimann W, Giertz H (1993) Effects of the central analgesic tramadol on the uptake and release of noradrenaline and dopamine in vitro. Br J Pharmacol 108:806–811

    Article  PubMed  CAS  Google Scholar 

  22. Maurer-Spurej E, Pittendreigh C, Solomons K (2004) The influence of selective serotonin reuptake inhibitors on human platelet serotonin. Thromb Haemost 91:119–128

    PubMed  CAS  Google Scholar 

  23. Gillman PK (2005) Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth 95:434–441

    Article  PubMed  CAS  Google Scholar 

  24. Richter T, Műrdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M, Eichelbaum M, Zanger UM (2004) Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Ther 308:189–197

    Article  PubMed  CAS  Google Scholar 

  25. Turpeinen M, Tolonen A, Uusitalo A, Jalonen J, Pelkonen O, Laine K (2005) Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin Pharmacol Ther 77:553–559

    Article  PubMed  CAS  Google Scholar 

  26. Turpeinen M, Raunio H, Pelkonen O (2006) The functional role of CYP2B6 in human drug metabolism: substrates and inhibitors in vitro, in vivo and in silico. Curr Drug Metab 7:605–714

    Article  Google Scholar 

  27. Turpeinen M, Nieminen R, Juntunen T, Taavitsainen P, Raunio H, Pelkonen O (2004) Selective inhibition of CYP2B6-catalyzed bupropion hydroxylation in human liver microsomes in vitro. Drug Metab Dispos 32:626–631

    Article  PubMed  CAS  Google Scholar 

  28. Ha-Duong N-T, Dijols S, Macherey A-C, Goldstein JA, Dansette PM, Mansuy D (2001) Ticlopidine as a selective mechanism-based inhibitor of human cytochrome P450 2C19. Biochemistry 40:12112–12122

    Article  PubMed  CAS  Google Scholar 

  29. Ko JW, Desta Z, Soukhova NV, Tracy T, Flockhart DA (2000) In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6. Br J Clin Pharmacol 49:343–351

    Article  PubMed  CAS  Google Scholar 

  30. Hagihara K, Nishiya Y, Kurihara A, Kazui M, Farid NA, Ikeda T (2008) Comparison of human cytochrome P450 inhibition by the thienopyridines prasugrel, clopidogrel, and ticlopidine. Drug Metab Pharmacokinet 23:412–420

    Article  PubMed  CAS  Google Scholar 

  31. Olkkola KT, Ahonen J, Neuvonen PJ (1996) The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 82:511–516

    PubMed  CAS  Google Scholar 

  32. Kaukonen KM, Olkkola KT, Neuvonen PJ (1997) Itraconazole increases plasma concentrations of quinidine. Clin Pharmacol Ther 62:510–517

    Article  PubMed  CAS  Google Scholar 

  33. Walsky RL, Astuccio AV, Obach RS (2006) Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6. J Clin Pharmacol 46:1426–1438

    Article  PubMed  CAS  Google Scholar 

  34. Michna E, Ross EL, Hynes WL, Nedeljkovic SS, Soumekh S, Janfaza D, Palombi D, Jamison RN (2004) Predicting aberrant drug behavior in patients treated for chronic pain. J Pain Symptom Manage 28:250–258

    Article  PubMed  Google Scholar 

  35. Patel BN, Sharma N, Sanyal M, Shrivastav PS (2009) An accurate, rapid and sensitive determination of tramadol and its active metabolite O-desmethyltramadol in human plasma by LC-MS/MS. J Pharm Biomed Anal 49:354–366

    Article  PubMed  CAS  Google Scholar 

  36. Peltoniemi MA, Saari TI, Hagelberg NM, Reponen P, Turpeinen M, Laine K, Neuvonen PJ, Olkkola K (2011) Exposure to oral S-ketamine is unaffected by itraconazole but greatly increased by ticlopidine. Clin Pharmacol Ther 90:296–302

    Article  PubMed  CAS  Google Scholar 

  37. Gubbins PO, Gurley BJ, Bowman J (1998) Rapid and sensitive high performance liquid chromatographic method for the determination of itraconazole and its hydroxy-metabolite in human serum. J Pharm Biomed Anal 16:1005–1012

    Article  PubMed  CAS  Google Scholar 

  38. Anderson GM, Young JG, Cohen DJ, Schlicht KR, Patel N (1981) Liquid-chromatographic determination of serotonin and tryptophan in whole blood and plasma. Clin Chem 27:775–776

    PubMed  CAS  Google Scholar 

  39. Scheinin M, Karhuvaara S, Ojala-Karlsson P, Kallio A, Koulu M (1991) Plasma 3,4-dihydroxyphenylglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG) are insensitive indicators of alpha 2-adrenoceptor mediated regulation of norepinephrine release in healthy human volunteers. Life Sci 49:75–84

    Article  PubMed  CAS  Google Scholar 

  40. Cogan DG (1941) Simplified entopic pupillometer. Am J Ophthalmol 24:1431–1433

    Google Scholar 

  41. Hannington-Kiff JG (1970) Measurement of recovery from outpatient general anaesthesia with a simple ocular test. Br Med J 3:132–135

    Article  PubMed  CAS  Google Scholar 

  42. Stone BM (1984) Pencil and paper tests—sensitivity to psycho-tropic drugs. Br J Clin Pharmacol 18:15S–20S

    Article  PubMed  Google Scholar 

  43. Kirchheiner J, Keulen JT, Bauer S, Roots I, Brockmoller J (2008) Effects of the CYP2D6 gene duplication on the pharmacokinetics and pharmacodynamics of tramadol. J Clin Psychopharmacol 28:78–83

    Article  PubMed  CAS  Google Scholar 

  44. Kot M, Daniel MA (2009) Effect of diethyldithiocarbamate (DDC) and ticlopidine on CYP1A2 activity and caffeine metabolism: an in vitro comparative study with human cDNA-expressed CYP1A2 and liver microsomes. Pharmacol Rep 61:1216–1220

    PubMed  CAS  Google Scholar 

  45. Varhe A, Olkkola KT, Neuvonen PJ (1994) Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 56:601–607

    Article  PubMed  CAS  Google Scholar 

  46. Backman JT, Kivistö KT, Olkkola KT, Neuvonen PJ (1998) The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 54:53–58

    Article  PubMed  CAS  Google Scholar 

  47. Saari TI, Grönlund J, Hagelberg NM, Neuvonen M, Laine K, Neuvonen PJ, Olkkola KT (2010) Effects of itraconazole on the pharmacokinetics and pharmacodynamics of intravenously and orally administered oxycodone. Eur J Clin Pharmacol 66:387–397

    Article  PubMed  CAS  Google Scholar 

  48. Partanen J, Jalava KM, Neuvonen PJ (1996) Itraconazole increases serum digoxin concentration. Pharmacol Toxicol 79:274–276

    Article  PubMed  CAS  Google Scholar 

  49. Shimizu M, Uno T, Sugawara K, Tateishi T (2006) Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of p-glycoprotein. Br J Clin Pharmacol 61:538–544

    Article  PubMed  CAS  Google Scholar 

  50. Yasui-Furukori N, Saito M, Niioka T, Inoue Y, Sato Y, Kaneko S (2007) Effect of itraconazole on pharmacokinetics of paroxetine: the role of gut transporters. Ther Drug Monit 29:45–48

    Article  PubMed  CAS  Google Scholar 

  51. Kanaan M, Daali Y, Dayer P, Desmeules J (2009) Uptake/efflux transport of tramadol enantiomers and O-desmethyl-tramadol: focus on p-glycoprotein. Basic Clin Pharmacol Toxicol 105:199–206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank Mrs. Elina Kahra (medical laboratory technologist, Clinical Pharmacology, TYKSLAB, Hospital District of Southwest Finland, Turku, Finland) for skillful technical assistance.

Funding

Turku University Hospital research fund EVO 13821, Turku, Finland

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuukka Saarikoski.

Additional information

The contributions of Nora M. Hagelberg and Tuukka Saarikoski in the study were equal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagelberg, N.M., Saarikoski, T., Saari, T.I. et al. Ticlopidine inhibits both O-demethylation and renal clearance of tramadol, increasing the exposure to it, but itraconazole has no marked effect on the ticlopidine-tramadol interaction. Eur J Clin Pharmacol 69, 867–875 (2013). https://doi.org/10.1007/s00228-012-1433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-012-1433-0

Keywords

Navigation