Skip to main content
Log in

Phenotypic flexibility in response to environmental salinity in the euryhaline crab Neohelice granulata from the mudflat and the saltmarsh of a SW coastal lagoon

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This study constitutes a first attempt to investigate intraspecific differences in osmoregulatory capacity and digestive and metabolic responses at the biochemical level in relation to hyper- and hypo-regulation in a single species of estuarine crab inhabiting contrasting habitats within a same intertidal area. We compared hemolymph osmolality, key digestive enzymes, glycemia and energy reserves in Neohelice granulata (Dana in Proc Acad Nat Sci Philadelphia 5:247–254, 1851) from the mudflat and saltmarsh of Mar Chiquita coastal lagoon (37°32′/37°45′S-57°19′/57°26′W) under a wide range of salinities (6–60 psu). Individuals from both sites exhibited high and similar osmoregulatory capacity, but while in individuals from mudflat low and high salinities affected lipase activity in hepatopancreas and triglycerides in muscle, in crabs from saltmarsh, high salinities affected glycogen in anterior gills. Low salinity differentially affected free glucose in anterior gills. The results suggest the occurrence of intraspecific distinct digestive and metabolic adjustments in relation to osmoregulatory responses and habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alberti J, Escapa M, Daleo P, Iribarne O, Silliman B, Bertness M (2007) Local and geographic variation in grazing intensity by herbivorous crabs in SW Atlantic salt marshes. Mar Ecol Prog Ser 349:235–243

    Article  Google Scholar 

  • Anger K (2001) The Biology of decapod crustacean larvae. Crustacean issues, vol 14. AA Balkema Publishers, Lisse, p 420

    Google Scholar 

  • Anger K, Spivak E, Luppi T, Bas C, Ismael D (2008) Larval salinity tolerance of the South American salt-marsh crab, Neohelice (Chasmagnathus) granulata: physiological constraints to estuarine retention, export and reimmigration. Helgol Mar Res 62:93–102

    Article  Google Scholar 

  • Artillo R, Pinoni SA, Asaro A, López Mañanes AA (2008) Glycogen storage sites in Chasmagnathus granulatus upon hyperregulation: differential postingesta response. Biocell 32:85

    Google Scholar 

  • Asaro A, del Valle JC, López Mañanes A (2011) Amylase, maltase and sucrase activities in hepatopancreas of the euryhaline crab Neohelice granulata (Decapoda: Brachyura: Varunidae): partial characterization and response to low environmental salinity. Sci Mar 75:517–524

    Article  CAS  Google Scholar 

  • Asaro A, del Valle JC, López Mañanes AA (2012) Sucrase activity in the hepatopancreas of the euryhaline crab Cyrtograpsus angulatus: response to environmental salinity. Biocell 36:A33

    Google Scholar 

  • Athamena A, Brichon G, Trajkovic-Bodennec S, Péqueux A, Chapelle S, Bodennec J, Zwingelstein G (2011) Salinity regulates N-methylation of phosphatidylethanolamine in euryhaline crustaceans hepatopancreas and exchange of newly-formed phosphatidylcholine with hemolymph. J Comp Physiol B 181:731–740

    Article  CAS  Google Scholar 

  • Bianchini A, Machado Lauer M, Nery L, Pinto Colares E, Monserrat JM, dos Santos Filho EA (2008) Biochemical and physiological adaptations in the estuarine crab Neohelice granulata during salinity acclimation. Comp Biochem Physiol A 151:423–436

    Article  Google Scholar 

  • Biesiot P, Capuzzo JM (1990) Changes in the digestive enzyme activities during early development of the American lobster Homarus americanus Milne Edwards. J Exp Mar Biol Ecol 136:107–122

    Article  CAS  Google Scholar 

  • Bortolus A, Iribarne O (1999) Effects of the burrowing crab Chasmagnathus granulata on a Spartina salt marsh. Mar Ecol Prog Ser 178:79–88

    Article  Google Scholar 

  • Bortolus A, Schwindt E, Iribarne O (2002) Positive plant-animal interactions in the high marsh of an Argentinean coastal lagoon. Ecology 83:733–742

    Google Scholar 

  • Boschi EE (1964) Los crustáceos decápodos brachyura del litoral bonaerense (R. Argentina). Bol Inst Biol Mar (Mar del Plata) 6:1–99

    Google Scholar 

  • Botto JL, Irigoyen HR (1979) Bioecología del cangrejal I. Contribución al conocimiento del cangrejo del estuario Chasmagnathus granulata Dana (Crustacea, Decapoda Grapsidae) en la desembocadura del río Salado, provincia de Buenos Aires. Seminario de biología Bentónica y Sedimentación de la Plataforma continental del Atlántico Sur. Montevideo, UNESCO, pp 161–169

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buckup L, Dutra B, Ribarcki F, Fernandes F, Noro C, Oliveira G, Vinagre A (2008) Seasonal variations in the biochemical composition of the crayfish Parastacus defossus (Crustacea, Decapada) in its natural environment. Comp Biochem Physiol A 149:59–67

    Article  CAS  Google Scholar 

  • Charmantier G, Anger K (2011) Ontogeny of osmoregulatory patterns in the South American shrimp Macrobrachium amazonicum: loss of hypo-regulation in a land-locked population indicates phylogenetic separation from estuarine ancestors. J Exp Mar Biol Ecol 396:89–98

    Article  Google Scholar 

  • Charmantier G, Bouaricha N, Charmantier-Daures M, Thuet P, Trilles JP (1989) Salinity tolerance and osmoregulatory capacity as indicators of the physiological state of peneid shrimps. Eur Aquat Soc Spec Publ 10:65–66

    Google Scholar 

  • Daleo P, Iribarne O (2009) The burrowing crab Neohelice granulata affects the root strategies of the cordgrass Spartina densiflora in SW Atlantic salt marshes. J Exp Mar Biol Ecol 373:66–71

    Article  Google Scholar 

  • Dana JD (1851) Crustacea Grapsoidea, (Cyclometopa, Edwardsii): Conspectus Crustacearum quae in Orbis Terrarum circumnavigatione, Carolo Wilkes e classe Reipublicae Foederatae Duce, lexit et descriptsit J. D. Dana. Proc Acad Nat Sci Philadelphia 5: 247–254 (printed in 1852)

  • del Valle JC, López Mañanes AA (2008) Digestive strategies in the South American subterranean rodent Ctenomys talarum. Comp Biochem Physiol A 150:387–394

    Article  Google Scholar 

  • del Valle JC, López Mañanes AA (2011) Digestive flexibility in females of the subterranean rodent Ctenomys talarum in their natural habitat. J Exp Zool A 315:41–148

    Google Scholar 

  • del Valle JC, Busch C, López Mañanes AA (2006) Phenotypic plasticity in response to low quality diet in the South American omnivorous rodent Akodon azarae (Rodentia: Sigmodontinae). Comp Biochem Physiol A 145:397–405

    Article  Google Scholar 

  • del Valle JC, Panzeri AM, López Mañanes AA (2012). Efecto de dopamina sobre las reservas de glucógeno en branquias y músculo del cangrejo eurihalino Cyrtograpsus angulatus. Abstracts XIV Jornadas de la Sociedad Argentina de Biología—Primer Encuentro Rioplatense de Biología, Bs As: 29

  • Dima JM, De Vido NA, Leal GA, Barón PJ (2009) Fluctuations in the biochemical composition of the Patagonian stone crab Platyxanthus patagonicus A. Milne Edwards, 1879 (Platyxanthidae: Brachyura) throughout its reproductive cycle. Sci Mar 73:423–430

    Article  CAS  Google Scholar 

  • Drach P, Tchernigovtzeff C (1967) Sur la méthode de détermination des stades d’intermue et son application générale aux Crustacés. Vie Milieu 18:595–607

    Google Scholar 

  • Fanjul E, Grela MA, Canepuccia A, Iribarne O (2008) The Southwest Atlantic intertidal burrowing crab Neohelice granulata modifies nutrient loads of phreatic waters entering coastal area. Estuar Coast Shelf Sci 79:300–306

    Article  Google Scholar 

  • Freire CA, Onken H, McNamara JC (2008) A structure function analysis of ion transport in crustacean gills and excretory organs. Comp Biochem Physiol A 151:272–304

    Article  Google Scholar 

  • Genovese G, Luchetti CG, Luquet CM (2004) Na+/K+-ATPase activity and gill ultrastructure in the hyper-hypo-regulating crab Chasmagnathus granulatus acclimated to dilute, normal and concentrated seawater. Mar Biol 144:111–118

    Article  CAS  Google Scholar 

  • González S, Pinoni S, López Mañanes A (2012) ATPases activities in gills of crab Neohelice granulata from contrasting habitats of Mar Chiquita coastal lagoon: differential response to hyporegulation. Biocell 36:A32

    Google Scholar 

  • Iribarne O, Bortolus A, Botto F (1997) Between-habitats differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Mar Ecol Prog Ser 155:132–145

    Article  Google Scholar 

  • Iribarne O, Martinetto P, Schwindt E, Botto F, Bortolus A, García Borboroglu P (2003) Evidences of habitat displacement between two common soft-bottom SW Atlantic intertidal crabs. J Exp Mar Biol Ecol 296:167–182

    Article  Google Scholar 

  • Jahn MP, Cavagni GM, Kaiser D, Kucharski LC (2006) Osmotic effect of choline and glycine betaine on the gills and hepatopancreas of the Chasmagnathus granulata crab submitted to hyperosmotic stress. J Exp Mar Biol Ecol 334:1–9

    Article  CAS  Google Scholar 

  • Kelly SA, Panhuis TM, Stoehr AM (2012) Phenotypic plasticity: molecular mechanisms and adaptive significance. Comp Physiol 2:1417–1439

    Google Scholar 

  • Kirschner LB (2004) The mechanism of sodium chloride uptake in hyperregulating aquatic animals. J Exp Biol 207:1439–1452

    Article  CAS  Google Scholar 

  • Kucharski LC, Schein V, Capp E, Da Silva RSM (2002) In vitro insulin stimulatory effect on glucose uptake and glycogen synthesis in the gills of the estuarine crab Chasmagnathus granulata. Gen Comp Endocrinol 125:256–263

    Article  CAS  Google Scholar 

  • Li E, Chen L, Zeng C, Yu N, Xiong Z, Chen X, Qin JG (2008) Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquaculture 274:80–86

    Article  CAS  Google Scholar 

  • Lignot JH, Spanings-Pierrot C, Charmantier G (2000) Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans. Aquaculture 191:209–245

    Article  CAS  Google Scholar 

  • Ljungström M, Norberg L, Olaisson H, Wernstedt C, Vega FV, Arvidson G, Mårdh S (1984) Characterization of proton-transporting membranes from resting pig gastric mucosa. Biochim Biophys Acta 769:209–219

    Article  Google Scholar 

  • López Mañanes AA, Magnoni LJ, Goldemberg AL (2000) Branchial carbonic anhydrase (CA) of gills of Chasmagnathus granulata (Crustacea Decapoda). Comp Biochem Physiol B 127:85–95

    Article  Google Scholar 

  • Lorenzon S, Edomi P, Giulianini PG, Mettulio R, Ferrero EA (2005) Role of biogenic amines and cHH in the crustacean hyperglycemic stress response. J Exp Biol 208:3341–3347

    Article  CAS  Google Scholar 

  • Lucu C, Towle DW (2003) Na+ + K+-ATPase in gills of aquatic crustacea. Comp Biochem Physiol A 135:195–214

    Article  Google Scholar 

  • Luppi T, Bas C, Méndez Casariego A, Albano M, Lancia J, Kittlein M, Rosenthal A, Farías N, Spivak E, Iribarne O (2012) The influence of habitat, season and tidal regime in the activity of the intertidal crab Neohelice (=Chasmagnathus) granulata. Helgol Mar Res. doi:10.1007/s10152-012-0300-9

    Google Scholar 

  • Luquet CM, Ford P, Rodriguez EM, Ansaldo M, Stella V (1992) Ionic regulation patterns in two species of estuarine crabs. Commun Biol 10:315–325

    Google Scholar 

  • Luquet CM, Genovese G, Rosa GA, Pellerano GN (2002a) Ultrastructural changes in the gill epithelium of the crab Chasmagnathus granulatus (Decapoda: Grapsidae) in diluted and concentrated seawater. Mar Biol 141:753–760

    Article  Google Scholar 

  • Luquet CM, Postel U, Halperin J, Urcola MR, Marques R, Siebers D (2002b) Transepithelial potential differences and Na+ flux in isolated perfused gills of the crab Chasmagnathus granulatus (Grapsidae) acclimated to hyper- and hypo-salinity. J Exp Biol 205:71–77

    CAS  Google Scholar 

  • Luquet CM, Weihrauch D, Senek M, Towle DW (2005) Induction of branchial ion transporter mRNA expression during acclimation to salinity change in the euryhaline crab Chasmagnathus granulatus. J Exp Biol 208:3627–3636

    Article  CAS  Google Scholar 

  • Luvizotto-Santos R, Lee J, Branco Z, Bianchini A, Nery L (2003) Lipids as energy source during salinity acclimation in the euryhaline crab Chasmagnathus granulata Dana, 1851 (Crustacea-Grapsidae). J Exp Zool A 295:200–205

    Google Scholar 

  • Markweg H, Lang MS, Wagner F (1995) Decanoic acid inhibition of lipase from Acetinobacter sp. OPA 55. Enzym Microb Technol 17:512–516

    Article  Google Scholar 

  • Martins TL, Chittó ALF, Rossetti CR, Brondani CK, Kuchar-ski LC, Da Silva RSM (2011) Effects of hypo- or hyperosmotic stress on lipid synthesis and gluconeogenic activity in tissues of the crab Neohelice granulata. Comp Biochem Physiol A 158:400–405

    Article  Google Scholar 

  • McGaw IJ (2006) Feeding and digestion in low salinity in an osmoconforming crab, Cancer gracilis I. Cardiovascular and respiratory responses. J Exp Biol 209:3766–3776

    Article  Google Scholar 

  • McNamara JC, Faria SC (2012) Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. J Comp Physiol B 182:997–1014

    Article  CAS  Google Scholar 

  • Méndez-Casariego A, Luppi T, Iribarne O, Daleo P (2011) Increase of organic matter transport between marshes and tidal flats by the burrowing crab Neohelice (Chasmagnathus) granulata Dana in SW Atlantic salt marshes. J Exp Mar Biol Ecol 401:110–117

    Article  Google Scholar 

  • Michiels MS (2010) Actividad de lipasa en hepatopáncreas del cangrejo eurihalino Neohelice granulata: modulación en relación a estados fisiológicos diferenciales. Degree Thesis. FCEyN, UNMDP. p 27

  • Michiels MS, Pinoni SA, del Valle JC, López Mañanes AA (2011) Lipase activity in hepatopancreas of the euryhaline crab Neohelice granulata: response in relation to osmoregulatory status. Biocell 35:163

    Google Scholar 

  • Michiels MS, del Valle JC, López Mañanes AA (2013) Effect of environmental salinity and dopamine injections on key digestive enzymes in hepatopancreas of the euryhaline crab Cyrtograpsus angulatus (Decapoda: Brachyura: Varunidae). Sci Mar 77:129–136

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid regent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Normant M, Król M, Jakubowska M (2012) Effect of salinity on the physiology and bioenergetics of adult Chinese mitten crabs Eriocheir sinensis. J Exp Mar Biol Ecol 416–417:215–220

    Article  Google Scholar 

  • Novo MS, Miranda RB, Bianchini A (2005) Sexual and seasonal variations in osmoregulation and ionoregulation in the estuarine crab Chasmagnathus granulatus (Crustacea, Decapoda). J Exp Mar Biol Ecol 323:118–137

    Article  CAS  Google Scholar 

  • Obi I, Kenneth E, Sterling M, Ahearn GA (2011) Transepithelial d-glucose and d-fructose transport across the American lobster, Homarus americanus, intestine. J Exp Biol 214:2337–2344

    Article  CAS  Google Scholar 

  • Péqueux A (1995) Osmotic regulation in crustaceans. J Crustac Biol 15:1–60

    Article  Google Scholar 

  • Perera E, Rodríguez-Viera L, Rodríguez-Casariego J, Fraga I, Carrillo O, Martínez-Rodríguez G, Mancera JM (2012) Dietary protein quality differentially regulates trypsin enzymes at the secretion and transcription level in Panulirus argus by distinct signaling pathways. J Exp Biol 215:853–862

    Article  CAS  Google Scholar 

  • Pfenning DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467

    Article  Google Scholar 

  • Piersman T, Drent J (2003) Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol 18:228–233

    Article  Google Scholar 

  • Pinoni SA (2009) Mecanismos de mantenimiento del medio interno en respuesta a estrés environmental en crustáceos decápodos de interés regional. PhD Thesis. Universidad Nacional de Mar del Plata. Mar del Plata, Argentina

  • Pinoni SA, López Mañanes AA (2004) Alkaline phosphatase activity sensitive to environmental salinity and dopamine in muscle of the euryhaline crab Cyrtograpsus angulatus. J Exp Mar Biol Ecol 307:35–46

    Article  CAS  Google Scholar 

  • Pinoni SA, López Mañanes AA (2008) Partial characterization and response under hyperregulating conditions of Na+/K+-ATPase and levamisole-sensitive alkaline phosphatase activities in chela muscle of the euryhaline crab Cyrtograpsus angulatus. Sci Mar 72:15–24

    CAS  Google Scholar 

  • Pinoni SA, López Mañanes AA (2009) Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: differential response to environmental salinity. J Exp Mar Biol Ecol 372:91–97

    Article  CAS  Google Scholar 

  • Pinoni SA, Goldemberg AL, López Mañanes AA (2005) Alkaline phosphatases activities in muscle of the euryhaline crab Chasmagnathus granulatus: response to environmental salinity. J Exp Mar Biol Ecol 326:217–226

    Article  CAS  Google Scholar 

  • Pinoni SA, Iribarne O, López Mañanes AA (2011) Between-habitat comparison of digestive enzymes activities and energy reserves in the SW Atlantic euryhaline burrowing crab Neohelice granulata. Comp Biochem Physiol A 158:552–559

    Article  Google Scholar 

  • Pinto Rodrigues A, Correia Oliveira P, Guilhermino L, Guimaraes L (2012) Effects of salinity stress on neurotransmission, energy metabolism, and anti-oxidant biomarkers of Carcinus maenas from two estuaries of the NW Iberian Peninsula. Mar Biol 159:2061–2074

    Article  Google Scholar 

  • Resch-Sedlmeier G, Sedlmeier D (1999) Release of digestive enzymes from the crustacean hepatopancreas: effect of vertebrate gastrointestinal hormones. Comp Biochem Physiol B 1:187–192

    Article  Google Scholar 

  • Romano N, Zeng C (2012) Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture 334–337:12–23

    Article  Google Scholar 

  • Sánchez-Paz A, García-Carreño F, Muhlia-Almazan A, Peregrino-Uriarte A, Hernández-López J, Yepiz-Plascencia G (2006) Usage of energy reserves in crustaceans during starvation: status and future directions. Insect Biochem Mol Biol 36:241–249

    Article  Google Scholar 

  • Sánchez-Paz A, García-Carreño F, Hernández-López J, Muhlia-Almazán A, Yepiz-Plascencia G (2007) Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). J Exp Mar Biol Ecol 340:184–193

    Article  Google Scholar 

  • Santos E, Nery L, Keller R, Gonçalves A (1997) Evidence for the involvement of the crustacean hyperglycemic hormone in the regulation of lipid metabolism. Physiol Zool 70:415–420

    Article  CAS  Google Scholar 

  • Schleich CE, Goldemberg AL, López Mañanes AA (2001) Salinity dependent Na+/K+ ATPase activity in gills of euryhaline crab Chasmagnathus granulatus. Gen Physiol Biophys 20:255–256

    CAS  Google Scholar 

  • Schmitt A, Santos E (1993) Lipid and carbohydrate metabolism of the intertidal crab Chasmagnathus granulata Dana 1851 (Crustacea–Decapoda) during emersion. Comp Biochem Physiol A 106:329–336

    Article  Google Scholar 

  • Shinji J, Kang B, Okutsu T, Banzai K, Ohira T, Tsutsui N, Wilder M (2012) Changes in crustacean hyperglycemic hormones in Pacific whiteleg shrimp Litopenaeus vannamei subjected to air-exposure and low-salinity stresses. Fish Sci 78:833–840

    Article  CAS  Google Scholar 

  • Sjoboen AD, Dunbar SG, Boskovic DS (2010) Temporal fluctuations of fatty acids in Pachygrapsus crassipes from Southern California. J Crustac Biol 30:257–265

    Article  Google Scholar 

  • Spivak E (1997) Cangrejos estuariales del Atlántico sudoccidental (25°–41°S) (Crustacea: Decapoda: Brachyura). Invest Mar Valparaíso 25:105–120

    Google Scholar 

  • Spivak ED (2010) The crab Neohelice (=Chasmagnathus) granulata: an emergent animal model from emergent countries. Helgol Mar Res 64:149–154

    Article  Google Scholar 

  • Spivak E, Anger K, Luppi T, Bas C, Ismael D (1994) Distribution and habitat preferences of two grapsid crab species in Mar Chiquita lagoon (Pcia. Bs As. Argentina). Helgol Meeresunters 48:59–78

    Article  Google Scholar 

  • Spivak E, Silva PV, Luppi T (2012) Habitat related variation in reproductive traits among intertidal crabs from the southwestern Atlantic. J Crustac Biol 32:57–66

    Article  Google Scholar 

  • Verri T, Mandal A, Zilli L, Bossa D, Mandal PK, Ingrosso L, Zonno V, Viella S, Ahearn GA, Storelli C (2001) d-Glucose transport in decapod crustacean hepatopancreas. Comp Biochem Physiol A 130:585–606

    CAS  Google Scholar 

  • Wright SH, Ahearn GA (1997) Nutrient absorption in invertebrates. In: Dantzler WH (ed) Handbook of physiology, section 13: comparative physiology. Oxford University Press, New York, pp 1137–1206

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall, Inc., New Jersey, p 662

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from the University of Mar del Plata, Argentina (EXA EXA601/12), and from the Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) (PIP OO21/11). MSM has a doctoral fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra A. López Mañanes.

Additional information

Communicated by H.-O. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinoni, S.A., Michiels, M.S. & López Mañanes, A.A. Phenotypic flexibility in response to environmental salinity in the euryhaline crab Neohelice granulata from the mudflat and the saltmarsh of a SW coastal lagoon. Mar Biol 160, 2647–2661 (2013). https://doi.org/10.1007/s00227-013-2258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2258-9

Keywords

Navigation