Skip to main content
Log in

Effects of salinity stress on neurotransmission, energy metabolism, and anti-oxidant biomarkers of Carcinus maenas from two estuaries of the NW Iberian Peninsula

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This study investigated the effects of salinity on biomarkers of oxidative stress, energy metabolism, and neurotransmission of Carcinus maenas from an estuary low impacted by pollution and from an estuary under chemical stress in the NW Iberian Peninsula. Crabs were collected in the field and, following an acclimation period, they were exposed for 7 days to five salinity levels ranging from 4 to 45 psu. At the end of the exposure period, stress biomarkers were determined in samples of muscle and digestive gland. The biomarkers assessed in the muscle were the activities of the enzymes cholinesterases (ChE), of which acetylcholinesterase is involved in neurotransmission, and lactate dehydrogenase (LDH) and isocitrate dehydrogenase (IDH) that are involved in energy metabolism. The biomarkers assessed in the digestive gland were (1) the activities of the enzymes glutathione S-transferases (GST), glutathione reductase (GR), and glutathione peroxidase (GPx), involved in phase II biotransformation and the anti-oxidant defence system; (2) the levels of total glutathiones (TG), also belonging to the anti-oxidant system; and (3) the levels of lipid peroxidation as a measure of oxidative damage. The results showed a significant influence of salinity on neurotransmission, energy metabolism, anti-oxidant status, and oxidative damage of C. maenas. For some biomarkers, this influence was dependent on whether the crabs were collected at the low-polluted estuary or at the contaminated estuary. In particular, crabs collected at the low-polluted estuary showed altered neurotransmission and anti-oxidant defences (GR). Crabs collected at the impacted estuary showed alterations in neurotransmission, energy metabolism (IDH and LDH), biotransformation, and anti-oxidant defences (GST, GR, GPx, and TG), as well as in oxidative damage, indicating that salinity change superimposes higher stress on these organisms. For ChE, IDH, and TG, altered responses were induced by both hypo- and hypersalinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An MI, Choi CY (2010) Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: effects on hemolymph and biochemical parameters. Comp Biochem Physiol B 155:34–42

    Article  Google Scholar 

  • Anger K, Spivak E, Luppi T (1998) Effects of reduced salinities on development and bioenergetics of early larval shore crab, Carcinus maenas. J Exp Mar Biol Ecol 220:287–304

    Article  Google Scholar 

  • Baker MA, Cerniglia GJ, Zaman A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190:360–365

    Article  CAS  Google Scholar 

  • Bamber SD, Depledge MH (1997a) Responses of shore crabs to physiological challenges following exposure to selected environmental contaminants. Aquat Toxicol 40:79–92

    Article  CAS  Google Scholar 

  • Bamber SD, Depledge MH (1997b) Evaluation of changes in the adaptive physiology of shore crabs (Carcinus maenas) as an indicator of pollution in estuarine environments. Mar Biol 129:667–672

    Article  Google Scholar 

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea Level. In: Climate Change 2007: the physical science basis. Contribution of working group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA

  • Bird P, Draper H (1984) Comparative studies on different methods of malondialdehyde determination. In: Packer L (ed) Methods in enzymology, vol 105. Academic Press, Orlando, pp 299–305

    Google Scholar 

  • Bjerregaard P, Vislie T (1985) Effects of mercury on ion and osmoregulation in the shore crab Carcinus maenas (L.). Comp Biochem Physiol C 82:227–230

    Article  CAS  Google Scholar 

  • Bjerregaard P, Vislie T (1986) Effect of copper on ion- and osmoregulation in the shore crab Carcinus maenas. Mar Biol 91:69–76

    Article  CAS  Google Scholar 

  • Boix D, Gascón S, Sala J, Badosa A, Brucet S, López-Flores R, Martinoy M, Gifre J, Quintana X (2008) Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597:53–69

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Breen E, Metaxas A (2009) Overlap in the distributions between indigenous and non-indigenous decapods in a brackish micro-tidal system. Aquat Biol 8:1–13

    Article  Google Scholar 

  • Cailleaud K, Maillet G, Budzinski H, Souissi S, Forget-Leray J (2007) Effects of salinity and temperature on the expression of enzymatic biomarkers in Eurytemora affinis (Calanoida, Copepoda). Comp Biochem Physiol A 147:841–849

    Article  CAS  Google Scholar 

  • Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C, Viarengo A (2000) The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci Total Environ 247:295–311

    Article  CAS  Google Scholar 

  • Calosi P, Morritt D, Chelazzi G, Ugolini A (2007) Physiological capacity and environmental tolerance in two sandhopper species with contrasting geographical ranges: Talitrus saltator and Talorchestia ugolinii. Mar Biol 151:1647–1655

    Article  Google Scholar 

  • Cieluch U, Anger K, Aujoulat F, Buchholz F, Charmantier-Daures M, Charmantie G (2004) Ontogeny of osmoregulatory structures and functions in the green crab Carcinus maenas (Crustacea, Decapoda). J Exp Biol 207:325–336

    Article  CAS  Google Scholar 

  • Cravo A, Lopes B, Serafim A, Company R, Barreira L, Gomes T, Bebianno MJ (2009) A multibiomarker approach in Mytilus galloprovincialis to assess environmental quality. J Environ Monit 11:1673–1686

    Article  CAS  Google Scholar 

  • Cribb AE, Leeder JS, Spielberg SP (1989) Use of a microplate reader in an assay of glutathione reductase using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 183:195–196

    Article  CAS  Google Scholar 

  • Cristescu M, Innes D, Stillman J, Crease T (2008) d- and l-lactate dehydrogenases during invertebrate evolution. Evol Biol 8:268

    Article  Google Scholar 

  • Crothers JH (1967) The biology of the shore crab Carcinus maenas (L.). I. The background—anatomy, growth and life history. Field Stud 2:407–434

    Google Scholar 

  • Day KE, Scott IM (1990) Use of acetylcholinesterase activity to detect sublethal toxicity in- stream invertebrates exposed to low concentrations of organophosphate insecticides. Aquat Toxicol 18:101–114

    Article  CAS  Google Scholar 

  • Day W, Hall AS, Kemp W, Yánez-Arancibia A (1989) Estuarine ecology. Wiley-Interscience, New York

    Google Scholar 

  • Diamantino TC, Almeida E, Soares AMVM, Guilhermino L (2001) Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna Straus. Chemosphere 45:553–560

    Article  CAS  Google Scholar 

  • Dissanayake A, Galloway TS, Malcolm JB (2011) Seasonal differences in the physiology of Carcinus maenas (Crustacea: Decapoda) from estuaries with varying levels of anthropogenic contamination. Estuar Coast Shelf Sci 93:320–327

    Article  CAS  Google Scholar 

  • Domingues CP, Creer S, Taylor MI, Queiroga H, Carvalho GR (2010) Genetic structure of Carcinus maenas within its native range: larval dispersal and oceanographic variability. Mar Ecol Prog Ser 410:111–123

    Article  Google Scholar 

  • Ellis G, Goldberg DM (1971) An improved manual and semi-automatic assay for NADP-dependent isocitrate dehydrogenase activity, with a description of some kinetic properties of human liver and serum enzyme. Clin Biochem 4:175–185

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Elumalai M, Antunes C, Guilhermino L (2007) Enzymatic biomarkers in the crab Carcinus maenas from the Minho River estuary (NW Portugal) exposed to zinc and mercury. Chemosphere 66:1249–1255

    Article  CAS  Google Scholar 

  • Fatela F, Moren J, Antunes C (2007) Salinity influence on foraminiferal tidal marsh assemblages of NW Portugal: an anthropogenic constraint? Thalassas 23:51–63

    Google Scholar 

  • Ferreira JC, Simas T, Nobre A, Silva MC, Shifferegger K, Lencart-Silva J (2003) Identification of sensitive areas and vulnerable zones in transitional and coastal Portuguese systems—application of the United States National Eutrophication Assessment to the Minho, Lima, Douro, Ria de Aveiro, Mondego, Tagus, Sado, Mira, Ria Formosa and Guadiana Systems. Instituto da Água and Institute of Marine Research, Lisboa

  • Freire CA, Togni VG, Hermes-Lima M (2011) Responses of free radical metabolism to air exposure or salinity stress, in crabs (Callinectes danae and C. ornatus) with different estuarine distributions. Comp Biochem Physiol A 160:291–300

    Article  CAS  Google Scholar 

  • Galloway TS, Brown RJ, Browne MA, Dissanayake A, Lowe D, Jones MB, Depledge MH (2004) A multibiomarker approach to environmental assessment. Environ Sci Technol 38:1723–1731

    Article  CAS  Google Scholar 

  • Gilles R (1998) Organic “compensatory” osmolytes in osmolarity control and hydration changes in animal cells. S Afr J Zool 33:76–86

    Google Scholar 

  • Gilles R, Pequeux A (1986) Physiological and ultrastructural studies of NaCl transport in crustaceans gills. Boll Zool 53:173–182

    Article  Google Scholar 

  • Gravato C, Guimarães L, Santos J, Faria M, Alves A, Guilhermino L (2010) Comparative study about the effects of pollution on glass and yellow eels (Anguilla anguilla) from the estuaries of Minho, Lima and Douro Rivers (NW Portugal). Ecotoxicol Environ Saf 73:524–533

    Article  CAS  Google Scholar 

  • Guerin JL, Stickle WB (1997) Effect of salinity on survival and bioenergetics of juvenile lesser blue crabs, Callinectes similis. Mar Biol 129:63–69

    Article  Google Scholar 

  • Guilhermino L, Lacerda MN, Nogueira AJA, Soares AMVM (2000) In vitro and in vivo inhibition of Daphnia magna acetylcholinesterase by surfactant agents: possible implications for contamination biomonitoring. Sci Total Environ 247:137–141

    Article  CAS  Google Scholar 

  • Guimarães L, Gravato C, Santos J, Monteiro LS, Guilhermino L (2009) Yellow eel (Anguilla anguilla) development in NW Portuguese estuaries with different contamination levels. Ecotoxicology 18:385–402

    Article  Google Scholar 

  • Guimarães L, Medina MH, Guilhermino L (2012) Health status of Pomatoschistus microps populations in relation to pollution and natural stressors: implications for ecological risk assessment. Biomarkers 17:62–77

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-Transferases. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hall LW, Anderson RD (1995) The influence of salinity on the toxicity of various classes of chemicals to aquatic biota. Crit Rev Toxicol 25:281–346

    Article  CAS  Google Scholar 

  • Henry RP, Gehnrich S, Weihrauch D, Towle DW (2003) Salinity-mediated carbonic anhydrase induction in the gills of the euryhaline green crab, Carcinus maenas. Comp Biochem Physiol A 136:243–258

    Article  Google Scholar 

  • Heugens EHW, Hendriks AJ, Dekker T, Straalen NMV, Admiraal W (2001) A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit Rev Toxicol 31:247–284

    Article  CAS  Google Scholar 

  • Hosoda S, Suga T, Shikama N, Mizuno K (2009) Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. J Oceanogr 65:579–586

    Article  CAS  Google Scholar 

  • Hulathduwa Y, Stickle W, Brown K (2007) The effect of salinity on survival, bioenergetics and predation risk in the mud crabs Panopeus simpsoni and Eurypanopeus depressus. Mar Biol 152:363–370

    Article  Google Scholar 

  • Intanai I, Taylor EW, Whiteley NM (2009) Effects of salinity on rates of protein synthesis and oxygen uptake in the post-larvae and juveniles of the tropical prawn Macrobrachium rosenbergii (de Man). Comp Biochem Physiol A 152:372–378

    Article  CAS  Google Scholar 

  • Jo S-H, Son M-K, Koh H-J, Lee S-M, Song I-H, Kim Y-O, Lee Y-S, Jeong K-S, Kim WB, Park J-W, Song BJ, Huhe T-L (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 276:16168–16176

    Article  CAS  Google Scholar 

  • Johnson IT, Jones MB (1990) Effect of zinc on osmoregulation of Gammarus duebeni (crustacea: amphipoda) from the estuary and the sewage treatment works at Looe, Cornwall. Ophelia 31:187–196

    Article  Google Scholar 

  • Kennish MJ (2002) Environmental threats and environmental future of estuaries. Environ Conserv 29:78–107

    Article  Google Scholar 

  • Liu Y, Wang W-N, Wang A-L, Wang J-M, Sun R-Y (2007) Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture 265:351–358

    Article  CAS  Google Scholar 

  • Livingstone DR (1998) The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp Biochem Physiol A 120:43–49

    Article  CAS  Google Scholar 

  • Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Poll Bull 42:656–666

    Article  CAS  Google Scholar 

  • Locatello L, Matozzo V, Marin M (2009) Biomarker responses in the crab Carcinus aestuarii to assess environmental pollution in the Lagoon of Venice (Italy). Ecotoxicology 18:869–877

    Article  CAS  Google Scholar 

  • Long SM, Ryder KJ, Holdway DA (2003) The use of respiratory enzymes as biomarkers of petroleum hydrocarbon exposure in Mytilus edulis planulatus. Ecotox Environ Saf 55:261–270

    Article  CAS  Google Scholar 

  • Lundebye AK, Curtis TM, Braven J, Depledge MH (1997) Effects of the organophosphorous pesticide, dimethoate, on cardiac and acetylcholinesterase (AChE) activity in the shore crab Carcinus maenas. Aquat Toxicol 40:23–36

    Article  CAS  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  Google Scholar 

  • Maria VL, Santos MA, Bebianno MJ (2009) Contaminant effects in shore crabs (Carcinus maenas) from Ria Formosa Lagoon. Comp Biochem Physiol C: Toxicol Pharmacol 150:196–208

    Article  CAS  Google Scholar 

  • Martin SB, Hitch AT, Purcell KM, Klerks PL, Leberg PL (2009) Life history variation along a salinity gradient in coastal marshes. Aquat Biol 8:15–28

    Article  Google Scholar 

  • Martín-Díaz ML, Sales D, Del Valls Casillas TA (2004) Influence of salinity in hemolymph vitellogenin of the shore crab Carcinus maenas, to be used as a biomarker of contamination. Bull Environ Contam Toxicol 73:870–877

    Article  Google Scholar 

  • Martín-Díaz ML, Villena-Lincoln A, Bamber S, Blasco J, DelValls TÁ (2005) An integrated approach using bioaccumulation and biomarker measurements in female shore crab, Carcinus maenas. Chemosphere 58:615–626

    Article  Google Scholar 

  • McGaw IJ, Naylor E (1992) Salinity preference of the shore crab Carcinus maenas in relation to coloration during intermoult and to prior acclimation. J Exp Mar Biol Ecol 155:145–159

    Article  Google Scholar 

  • Menezes S, Soares A, Guilhermino L, Peck MR (2006) Biomarker responses of the estuarine brown shrimp Crangon crangon L. to non-toxic stressors: temperature, salinity and handling stress effects. J Exp Mar Biol Ecol 335:114–122

    Article  Google Scholar 

  • Mesquita SR, Guilhermino L, Guimarães L (2011) Biochemical and locomotor responses of Carcinus maenas exposed to the serotonin reuptake inhibitor fluoxetine. Chemosphere 85:967–976

    Article  CAS  Google Scholar 

  • Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ (1984) Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney: possible implications in analgesic nephropathy. Biochem Pharmacol 33:1801–1807

    Article  CAS  Google Scholar 

  • Monserrat JM, Martínez PE, Geracitano LA, Amado LL, Martins CM, Pinho GL, Chaves IS, Ferreira-Cravo M, Ventura-Lima J, Bianchini A (2007) Pollution biomarkers in estuarine animals: critical review and new perspectives. Comp Biochem Physiol C: Toxicol Pharmacol 146:221–234

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Oltra R, Todoli R (1997) Effects of temperature, salinity and food level on the life history traits of the marine rotifer Synchaera cecilia valentina, n. subsp. J Plankton Res 19:693–702

    Article  Google Scholar 

  • Paital B, Chainy GB (2010) Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp Biochem Physiol C: Toxicol Pharmacol 151:142–151

    Article  Google Scholar 

  • Payne JF, Mathieu A, Melvin W, Fancey LL (1996) Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland. Mar Poll Bull 32:225–231

    Article  CAS  Google Scholar 

  • Pereira P, Pablo HD, Subida DM, Vale C, Pacheco M (2009) Biochemical responses of the shore crab (Carcinus maenas) in a eutrophic and metal-contaminated coastal system (Óbidos lagoon, Portugal). Ecotoxicol Environ Saf 72:1471–1480

    Article  CAS  Google Scholar 

  • Pereira P, Pablo HD, Subida MD, Vale C, Pacheco M (2010) Bioaccumulation and biochemical markers in feral crab (Carcinus maenas) exposed to moderate environmental contamination—the impact of non-contamination-related variables. Environ Toxicol 26:524–540

    Article  Google Scholar 

  • Pfeifer S, Schiedek D, Dippner JW (2005) Effect of temperature and salinity on acetylcholinesterase activity, a common pollution biomarker, in Mytilus sp. from the south-western Baltic Sea. J Exp Mar Biol Ecol 320:93–103

    Article  CAS  Google Scholar 

  • Reis P, Antunes J, Almeida C (2009) Metal levels in sediments from the Minho estuary salt marsh: a metal clean area? Environ Monit Assess 159:191–205

    Article  CAS  Google Scholar 

  • Scaps P, Borot O (2000) Acetylcholinesterase activity of the polychaete Nereis diversicolor: effects of temperature and salinity. Comp Biochem Physiol C: Toxicol Pharmacol 125:377–383

    CAS  Google Scholar 

  • Schein V, Chittó ALF, Etges R, Kucharski LC, Wormhoudt A, Da Silva RSM (2005) Effects of hypo- or hyperosmotic stress on gluconeogenesis, phosphoenolpyruvate carboxykinase activity, and gene expression in jaw muscle of the crab Chasmagnathus granulata: seasonal differences. J Exp Mar Biol Ecol 316:203–212

    Article  CAS  Google Scholar 

  • Seo JS, Lee K-W, Rhee J-S, Hwang D-S, Lee Y-M, Park HG, Ahn I-Y, Lee J-S (2006) Environmental stressors (salinity, heavy metals, H2O2) modulate expression of glutathione reductase (GR) gene from the intertidal copepod Tigriopus japonicus. Aquat Toxicol 80:281–289

    Article  CAS  Google Scholar 

  • Siebers D, Leweck K, Markus H, Winkler A (1982) Sodium regulation in the shore crab Carcinus maenas as related to ambient salinity. Mar Biol 69:37–43

    Article  CAS  Google Scholar 

  • Sorenson AL (1973) Demonstration of an action of acetylcholine on the central nervous system of a crab. Biol Bull 144:180–191

    Article  CAS  Google Scholar 

  • Sousa R, Dias S, Antunes C (2006) Spatial subtidal macrobenthic distribution in relation to abiotic conditions in the Lima estuary, NW of Portugal. Hydrobiologia 559:135–148

    Article  Google Scholar 

  • Sousa R, Dias S, Freitas V, Antunes C (2008) Subtidal macrozoobenthic assemblages along the River Minho estuarine gradient (north-west Iberian Peninsula). Aquat Conserv 18:1063–1077

    Article  Google Scholar 

  • Thurberg FP, Dawson MA, Collier RS (1973) Effects of copper and cadmium on osmoregulation and oxygen consumption in two species of estuarine crabs. Mar Biol 23:171–175

    Article  CAS  Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  Google Scholar 

  • Towle DW (1997) Molecular approaches to understanding salinity adaptation of estuarine animals. Am Zool 37:575–584

    CAS  Google Scholar 

  • Van Horn J, Malhoe V, Delvina M, Thies M, Tolley SG, Ueda T (2010) Molecular cloning and expression of a 2-Cys peroxiredoxin gene in the crustacean Eurypanopeus depressus induced by acute hypo-osmotic stress. Comp Biochem Physiol B 155:309–315

    Article  Google Scholar 

  • Vargas-Chacoff L, Astola A, Arjona FJ, Martín del Río MP, García-Cózar F, Mancera JM, Martínez-Rodríguez G (2009) Pituitary gene and protein expression under experimental variation on salinity and temperature in Gilthead Sea bream Sparus aurata. Comp Biochem Physiol B 154:303–308

    Article  CAS  Google Scholar 

  • Vassault A (1983) Methods of enzymatic analysis. Academic Press, New York

    Google Scholar 

  • Walsh PJ, Henry RP (1990) Activities of metabolic enzymes in the deep-water crabs Chaceon fenniri and C. quinquedens and the shallow-water crab Callinectes sapidus. Mar Biol 106:343–346

    Article  CAS  Google Scholar 

  • Wedderburn J, Cheung V, Bamber S, Bloxham M, Depledge MH (1998) Biomarkers of biochemical and cellular stress in Carcinus maenas: an in situ field study. Mar Env Res 46:321–324

    Article  CAS  Google Scholar 

  • Whiteley NM, Scott JL, Breeze SJ, McCann L (2001) Effects of water salinity on acid-base balance in decapod crustaceans. J Exp Biol 204:1003–1011

    CAS  Google Scholar 

  • Williams WD, Boulton AJ, Taaffe RG (1990) Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197:257–266

    Article  CAS  Google Scholar 

  • Wu RSS, Lam PKS (1997) Glucose-6-phosphate dehydrogenase and lactate dehydrogenase in the green-lipped mussel (Perna viridis): possible biomarkers for hypoxia in the marine environment. Water Res 31:2797–2801

    Article  CAS  Google Scholar 

  • Yin F, Peng S, Sun P, Shi Z (2011) Effects of low salinity on antioxidant enzymes activities in kidney and muscle of juvenile silver pomfret Pampus argenteus. Acta Ecol Sin 31:55–60

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by FEDER funds, through the Programme COMPETE, and National funds, through FCT (Portuguese Foundation for Science and Technology), within the scope of the project CRABTHEMES (PTDC/MAR/71143/2006 and FCOMP-01-0124-FEDER-007383). A. P. Rodrigues was supported by a PhD training grant from FCT (SFRH/BD/65456/2009). We would like to acknowledge the comments of two anonymous reviewers that helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Pinto Rodrigues.

Additional information

Communicated by H. O. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, A.P., Oliveira, P.C., Guilhermino, L. et al. Effects of salinity stress on neurotransmission, energy metabolism, and anti-oxidant biomarkers of Carcinus maenas from two estuaries of the NW Iberian Peninsula. Mar Biol 159, 2061–2074 (2012). https://doi.org/10.1007/s00227-012-1992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1992-8

Keywords

Navigation