Skip to main content
Log in

New Lower Bounds on Circuit Size of Multi-output Functions

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Let B n, m be the set of all Boolean functions from {0, 1}n to {0, 1}m, B n = B n, 1 and U 2 = B 2∖{⊕, ≡}. In this paper, we prove the following two new lower bounds on the circuit size over U 2.

  1. 1.

    A lower bound \(C_{U_{2}}(f) \ge 5n-o(n)\) for a linear function fB n − 1,logn . The lower bound follows from the following more general result: for any matrix A ∈ {0, 1}m × n with n pairwise different non-zero columns and b ∈ {0, 1}m,

    $$C_{U_{2}}(Ax \oplus b)\ge 5(n-m).$$
  2. 2.

    A lower bound \(C_{U_{2}}(f) \ge 7n-o(n)\) for fB n, n . Again, this is a consequence of the following result: for any fB n satisfying a certain simple property,

    $$C_{U_{2}}(g(f)) \ge \min \{C_{U_{2}}(f|_{x_{i} = a, x_{j} = b}) \colon x_{i} \neq x_{j}, a,b, \in \{0,1\}\} +2n-\varTheta (1)$$

    where g(f) ∈ B n, n is defined as follows: g(f) = (fx 1, … , fx n ) (to get a 7no(n) lower bound it remains to plug in a known function fB n, 1 with \(C_{U_{2}}(f) \ge 5n-o(n)\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blum, N.: A Boolean function requiring 3n network size. Theor. Comput. Sci. 28, 337–345 (1984)

    Article  MATH  Google Scholar 

  2. Blum, N., Seysen, M.: Characterization of all optimal networks for a simultaneous computation of AND and NOR. Acta. Informatica 21(2), 171–181 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chashkin, A.V.: On complexity of Boolean matrices, graphs and corresponding Boolean matrices. Diskretnaya matematika 6(2), 43–73 (1994). in Russian

    MathSciNet  Google Scholar 

  4. Demenkov, E., Kulikov, A.S.: An elementary proof of a 3no(n) lower bound on the circuit complexity of affine dispersers. In: Proceedings of 36th International Symposium on Mathematical Foundations of Computer Science (MFCS), Springer, Lecture Notes in Computer Science, Vol. 6907, pp 256–265 (2011)

  5. Gashkov, S.B., Kochergin, V.V.: On addition chains of vectors, gate circuits, and the complexity of computations of powers. Sib. Adv. Math. 4(4), 1–16 (1994)

    MathSciNet  Google Scholar 

  6. Hiltgen, A.P.L.: Cryptographically Relevant Contributions to Combinational Complexity Theory. ETH Series in Information Processing 3, doi:10.3929/ethz-a-000926139 (1994)

  7. Iwama, K., Morizumi, H.: An explicit lower bound of 5no(n) for boolean circuits. In: Proceedings of International Symposium on Mathematical Foundations of Computer Science (MFCS), Springer, Lecture Notes in Computer Science, vol. 2420, pp 353?364 (2002)

  8. Kojevnikov, A., Kulikov, A.S.: Circuit Complexity and Multiplicative Complexity of Boolean Functions. In: Proceedings of Computability in Europe (CiE), Springer, Lecture Notes in Computer Science, vol. 6158, pp 239?245 (2010)

  9. Lachish, O., Raz, R.: Explicit lower bound of 4.5no(n) for boolean circuits. In: Proceedings of the Annual Symposium on Theory of Computing (STOC), pp 399?408 (2001)

  10. Lamagna, E.A., Savage, J.E.: On the logical complexity of symmetric switching functions in monotone and complete bases. Tech. rep., Brown University (1973)

  11. Muller, D.E.: Complexity in electronic switching circuits. IRE Transactions on Electronic Computers EC-5, 15–19 (1956)

  12. Paul, W.J.: A 2.5n-lower bound on the combinational complexity of Boolean functions. SIAM J. Comput. 6(3), 427–433 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  13. Red’kin, N.P.: Minimal realization of a binary adder. Problemy kibernetiki 38, 181–216 (1981). in Russian

    MATH  MathSciNet  Google Scholar 

  14. Savický, P., žák, S.: A large lower bound for 1-branching programs. Tech. Rep. TR96-036, ECCC (1996)

  15. Schnorr, C.P.: Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen. Computing 13, 155–171 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schnorr, C.P.: The combinational complexity of equivalence. Theor. Comput. Sci. 1, 289–295 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stockmeyer, L.J.: On the combinational complexity of certain symmetric Boolean functions. Math. Syst. Theory 10, 323–336 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zwick, U.: A 4n lower bound on the combinational complexity of certain symmetric boolean functions over the basis of unate dyadic Boolean functions. SIAM J. Comput. 20, 499–505 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their comments that helped us to improve the readability of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Demenkov.

Additional information

Research is partially supported by the Government of the Russian Federation (grant 14.Z50.31.0030) and Russian Foundation for Basic Research (grant 14-01-00545).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demenkov, E., Kulikov, A.S., Melanich, O. et al. New Lower Bounds on Circuit Size of Multi-output Functions. Theory Comput Syst 56, 630–642 (2015). https://doi.org/10.1007/s00224-014-9590-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-014-9590-4

Keywords

Navigation