Skip to main content

Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9198))

Included in the following conference series:

Abstract

We revisit the gate elimination method, generalize it to prove correlation bounds of boolean circuits with Parity, and also derive deterministic #SAT algorithms for small linear-size circuits. In particular, we prove that, for boolean circuits of size \(3n - n^{0.51}\), the correlation with Parity is at most \(2^{-n^{\varOmega (1)}}\), and there is a #SAT algorithm running in time \(2^{n-n^{\varOmega (1)}}\); for circuit size 2.99n, the correlation with Parity is at most \(2^{-{\varOmega (n)}}\), and there is a #SAT algorithm running in time \(2^{n-{\varOmega (n)}}\). Similar correlation bounds and algorithms are also proved for circuits of size almost 2.5n over the full binary basis \(B_2\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. JACM 48(4), 778–797 (2001)

    Article  MATH  Google Scholar 

  2. Beame, P., Impagliazzo, R., Srinivasan, S.: Approximating \(ac^0\) by small height decision trees and a deterministic algorithm for #\(ac^0\) sat. In: Proceedings of the 2012 IEEE Conference on Computational Complexity, CCC 2012 (2012)

    Google Scholar 

  3. Blum, N.: A Boolean function requiring \(3n\) network size. Theoretical Computer Science 28, 337–345 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourgain, J.: On the construction of affine-source extractors. Geometric and Functional Analysis 17(1), 33–57 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, R., Kabanets, V.: Correlation bounds and #sat algorithms for small linear-size circuits. ECCC 21, 184 (2014)

    Google Scholar 

  6. Chen, R., Kabanets, V., Kolokolova, A., Shaltiel, R., Zuckerman, D.: Mining circuit lower bound proofs for meta-algorithms. In: CCC 2014 (2014)

    Google Scholar 

  7. Chen, R., Kabanets, V., Saurabh, N.: An improved deterministic #SAT algorithm for small de Morgan formulas. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 165–176. Springer, Heidelberg (2014)

    Google Scholar 

  8. Cohen, G., Shinkar, I.: The complexity of DNF of parities. ECCC 21, 99 (2014)

    Google Scholar 

  9. Demenkov, E., Kulikov, A.S.: An elementary proof of a 3n \(-\) o(n) lower bound on the circuit complexity of affine dispersers. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 256–265. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: STOC 1986, pp. 6–20 (1986)

    Google Scholar 

  11. Håstad, J.: The shrinkage exponent of de Morgan formulae is 2. SIAM Journal on Computing 27, 48–64 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. HÃ¥stad, J.: On the correlation of parity and small-depth circuits. ECCC 19, 137 (2012)

    Google Scholar 

  13. Impagliazzo, R., Matthews, W., Paturi, R.: A satisfiability algorithm for AC\(^0\). In: SODA 2012, pp. 961–972 (2012)

    Google Scholar 

  14. Impagliazzo, R., Meka, R., Zuckerman, D.: Pseudorandomness from shrinkage. In: FOCS 2012, pp. 111–119 (2012)

    Google Scholar 

  15. Iwama, K., Morizumi, H.: An explicit lower bound of \(5n - o(n)\) for boolean circuits. In: MFCS 2002, pp. 353–364 (2002)

    Google Scholar 

  16. Komargodski, I., Raz, R.: Average-case lower bounds for formula size. In: STOC 2013, pp. 171–180 (2013)

    Google Scholar 

  17. Komargodski, I., Raz, R., Tal, A.: Improved average-case lower bounds for demorgan formula size. In: FOCS 2013, pp. 588–597 (2013)

    Google Scholar 

  18. Lachish, O., Raz, R.: Explicit lower bound of \(4.5n - o(n)\) for boolena circuits. In: STOC 2001, pp. 399–408. ACM, New York (2001)

    Google Scholar 

  19. Li, X.: A new approach to affine extractors and dispersers. In: CCC 2011, pp. 137–147 (2011)

    Google Scholar 

  20. Nurk, S.: An \(o(2^{0.4058m})\) upper bound for circuit sat. PDMI Preprint (2009)

    Google Scholar 

  21. Reichardt, B.: Reflections for quantum query algorithms. In: SODA 2011, pp. 560–569 (2011)

    Google Scholar 

  22. Santhanam, R.: Fighting perebor: new and improved algorithms for formula and qbf satisfiability. In: FOCS 2010, pp. 183–192 (2010)

    Google Scholar 

  23. Schnorr, C.: Zwei lineare untere schranken für die komplexität boolescher funktionen. Computing 13(2), 155–171 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  24. Seto, K., Tamaki, S.: A satisfiability algorithm and average-case hardness for formulas over the full binary basis. In: CCC 2012, pp. 107–116 (2012)

    Google Scholar 

  25. Subbotovskaya, B.A.: Realizations of linear functions by formulas using and or, not. Soviet Math. Doklady 2, 110–112 (1961)

    MATH  Google Scholar 

  26. Yao, A.C.: Separating the polynomial-time hierarchy by oracles. In: FOCS 1985, pp. 1–10 (1985)

    Google Scholar 

  27. Yehudayoff, A.: Affine extractors over prime fields. Combinatorica 31(2), 245–256 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zwick, U.: A 4n lower bound on the combinational complexity of certain symmetric boolean functions over the basis of unate dyadic boolean functions. SIAM J. Comput. 20(3), 499–505 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiwen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, R., Kabanets, V. (2015). Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits. In: Xu, D., Du, D., Du, D. (eds) Computing and Combinatorics. COCOON 2015. Lecture Notes in Computer Science(), vol 9198. Springer, Cham. https://doi.org/10.1007/978-3-319-21398-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21398-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21397-2

  • Online ISBN: 978-3-319-21398-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics