Skip to main content
Log in

Heritability of Bone Mineral Density in a Multivariate Family-Based Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

There is evidence for a genetic contribution to bone mineral density (BMD×). Different loci affecting BMD have been identified by diverse linkage and genome-wide association studies. We studied the heritability of and the correlations among six densitometric phenotypes and four bone mass/fracture phenotypes. For this purpose, we used a family-based study of the genetics of osteoporosis, the Genetic Analysis of Osteoporosis Project. The primary aim of our study was to examine the roles of genetic and environmental factors in determining osteoporosis-related phenotypes. The project consisted of 11 extended families from Spain. All of them were selected through a proband with osteoporosis. BMD was measured using dual-energy X-ray absorptiometry. The proportion of variance of BMD attributable to significant covariates ranged from 25 % (for femoral neck BMD) to 48 % (for whole-body total BMD). The vast majority of the densitometric phenotypes had highly significant heritability, ranging from 0.252 (whole-body total BMD) to 0.537 (trochanteric BMD) after correcting for covariate effects. All of the densitometric phenotypes showed high and significant genetic correlations (from −0.772 to −1.000) with a low bone mass/osteopenia condition (Affected 3). Our findings provide additional evidence on the heritability of BMD and a strong genetic correlation between BMD and bone mass/fracture phenotypes in a Spanish population. Our results emphasize the importance of detecting genetic risk factors and the benefit of early diagnosis and especially therapeutic and preventive strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oden A, McCloskey EV, Johansson H, Kanis JA (2013) Assessing the impact of osteoporosis on the burden of hip fractures. Calcif Tissue Int 92(1):42–49

    Article  CAS  PubMed  Google Scholar 

  2. Kanis J (1997) Diagnosis of osteoporosis. Osteoporos Int 7(3):S108–S116

    Article  PubMed  Google Scholar 

  3. Lin JT, Lane JM (2004) Osteoporosis: a review. Clin Orthop Relat Res 425:126–134

    Article  PubMed  Google Scholar 

  4. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475

    Article  PubMed  Google Scholar 

  5. Watts NB (2004) Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int 15(11):847–854

    Article  PubMed  Google Scholar 

  6. Arden NK, Baker J, Hogg C, Baan K, Spector TD (1996) The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res 11(4):530–534

    Article  CAS  PubMed  Google Scholar 

  7. Hunter DJ, de Lange M, Andrew T, Snieder H, MacGregor AJ, Spector TD (2001) Genetic variation in bone mineral density and calcaneal ultrasound: a study of the influence of menopause using female twins. Osteoporos Int 12(5):406–411

    Article  CAS  PubMed  Google Scholar 

  8. Kaprio J, Rimpela A, Winter T, Viken RJ, Rimpela M, Rose RJ (1995) Common genetic influences on BMI and age at menarche. Hum Biol 67(5):739–753

    CAS  PubMed  Google Scholar 

  9. Nguyen TV, Blangero J, Eisman JA (2000) Genetic epidemiological approaches to the search for osteoporosis genes. J Bone Miner Res 15(3):392–401

    Article  CAS  PubMed  Google Scholar 

  10. Snieder H, MacGregor AJ, Spector TD (1998) Genes control the cessation of a woman’s reproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab 83(6):1875–1880

    CAS  PubMed  Google Scholar 

  11. Zintzaras E, Doxani C, Koufakis T, Kastanis A, Rodopoulou P, Karachalios T (2011) Synopsis and meta-analysis of genetic association studies in osteoporosis for the focal adhesion family genes: the CUMAGAS-OSTEOporosis information system. BMC Med 26(9):9

    Article  Google Scholar 

  12. Styrkarsdottir U, Cazier JB, Kong A, Rolfsson O, Larsen H, Bjarnadottir E et al (2003) Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PLoS Biol 1(3):E69

    Article  PubMed Central  PubMed  Google Scholar 

  13. Berard A, Bravo G, Gauthier P (1997) Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int 7(4):331–337

    Article  CAS  PubMed  Google Scholar 

  14. Simkin A, Ayalon J, Leichter I (1987) Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcif Tissue Int 40:59–63

    Article  CAS  PubMed  Google Scholar 

  15. Kiel DP, Zhang Y, Hannan MT, Anderson JJ, Baron JA, Felson DT (1996) The effect of smoking at different life stages on bone mineral density in elderly men and women. Osteoporos Int 6(3):240–248

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen TV, Howard GM, Kelly PJ, Eisman JA (1998) Bone mass, lean mass, and fat mass: same genes or same environments? Am J Epidemiol 147(1):3–16

    Article  CAS  PubMed  Google Scholar 

  17. Peacock M, Turner CH, Econs MJ, Foroud T (2002) Genetics of osteoporosis. Endocr Rev 23(3):303–326

    Article  CAS  PubMed  Google Scholar 

  18. Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31(5):629–662

    Article  CAS  PubMed  Google Scholar 

  19. Peacock M, Koller DL, Lai D, Hui S, Foroud T, Econs MJ (2009) Bone mineral density variation in men is influenced by sex-specific and non sex-specific quantitative trait loci. Bone 45(3):443–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Xiao P, Shen H, Guo YF, Xiong DH, Liu YZ, Liu YJ, Zhao LJ, Long JR, Guo Y, Recker RR, Deng HW (2006) Genomic regions identified for BMD in a large sample including epistatic interactions and gender-specific effects. J Bone Miner Res 21(10):1536–1544

    Article  CAS  PubMed  Google Scholar 

  21. Richards JB, Zheng HF, Spector TD (2012) Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet 13(8):576–588

    Article  CAS  PubMed  Google Scholar 

  22. Athanasiadis G, Malouf J, Hernandez-Sosa N, Martin-Fernandez L, Catalan M, Casademont J, Soria JM (2014) Linkage and association analyses using families identified a locus affecting an osteoporosis-related trait. Bone 60:98–103

    Article  CAS  PubMed  Google Scholar 

  23. Blangero J, Almasy L (1997) Multipoint oligogenic linkage analysis of quantitative traits. Genet Epidemiol 14(6):959–964

    Article  CAS  PubMed  Google Scholar 

  24. Laird NM, Horvath S, Xu X (2000) Implementing a unified approach to family-based tests of association. Genet Epidemiol 19(1):S36–S42

    Article  PubMed  Google Scholar 

  25. Kendall M, Stuart A (1972) Advanced theory of statistics. Hafner, New York

    Google Scholar 

  26. Self SG, Liang KY (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions. J Am Stat Assoc 82:605–610

    Article  Google Scholar 

  27. Williams JT, Duggirala R, Blangero J (1997) Statistical properties of a variance components method for quantitative trait linkage analysis in nuclear families and extended pedigrees. Genet Epidemiol 14(6):1065–1070

    Article  CAS  PubMed  Google Scholar 

  28. Comuzzie AG, Blangero J, Mahaney MC, Haffner SM, Mitchell BD, Stern MP et al (1996) Genetic and environmental correlations among hormone levels and measures of body fat accumulation and topography. J Clin Endocrinol Metab 81(2):597–600

    CAS  PubMed  Google Scholar 

  29. Duncan EL, Cardon LR, Sinsheimer JS, Wass JA, Brown MA (2003) Site and gender specificity of inheritance of bone mineral density. J Bone Miner Res 18(8):1531–1538

    Article  PubMed  Google Scholar 

  30. Naganathan V, Macgregor A, Snieder H, Nguyen T, Spector T, Sambrook P (2002) Gender differences in the genetic factors responsible for variation in bone density and ultrasound. J Bone Miner Res 17(4):725–733

    Article  PubMed  Google Scholar 

  31. Orwoll ES, Belknap JK, Klein RF (2001) Gender specificity in the genetic determinants of peak bone mass. J Bone Miner Res 16(11):1962–1971

    Article  CAS  PubMed  Google Scholar 

  32. Kammerer CM, Schneider JL, Cole SA, Hixson JE, Samollow PB, O’Connell JR et al (2003) Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans. J Bone Miner Res 18(12):2245–2252

    Article  CAS  PubMed  Google Scholar 

  33. Karasik D, Hsu YH, Zhou Y, Cupples LA, Kiel DP, Demissie S (2010) Genome-wide pleiotropy of osteoporosis-related phenotypes: the Framingham Study. J Bone Miner Res 25(7):1555–1563

    Article  PubMed Central  PubMed  Google Scholar 

  34. Yang TL, Zhao LJ, Liu YJ, Liu JF, Recker RR, Deng HW (2006) Genetic and environmental correlations of bone mineral density at different skeletal sites in females and males. Calcif Tissue Int 78(4):212–217

    Article  CAS  PubMed  Google Scholar 

  35. Mitchell BD, Kammerer CM, Schneider JL, Perez R, Bauer RL (2003) Genetic and environmental determinants of bone mineral density in Mexican Americans: results from the San Antonio Family Osteoporosis Study. Bone 33(5):839–846

    Article  PubMed  Google Scholar 

  36. Videman T, Levälahti E, Battié MC, Simonen R, Vanninen E, Kaprio J (2007) Heritability of BMD of femoral neck and lumbar spine: a multivariate twin study of Finnish men. J Bone Miner Res 22(9):1455–1462

    Article  PubMed  Google Scholar 

  37. Park JH, Song YM, Sung J, Lee K, Kim YS, Park YS (2012) Genetic influence on bone mineral density in Korean twins and families: the healthy twin study. Osteoporos Int 23(4):1343–1349

    Article  PubMed  Google Scholar 

  38. Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC (1991) Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6(6):561–567

    Article  CAS  PubMed  Google Scholar 

  39. Tse KY, Macias BR, Meyer RS, Hargens AR (2009) Heritability of bone density: regional and gender differences in monozygotic twins. J Orthop Res 27(2):150–154

    Article  PubMed  Google Scholar 

  40. Andrew T, Antioniades L, Scurrah KJ, Macgregor AJ, Spector TD (2005) Risk of wrist fracture in women is heritable and is influenced by genes that are largely independent of those influencing BMD. J Bone Miner Res 20(1):67–74

    Article  PubMed  Google Scholar 

  41. Deng FY, Lei SF, Li MX, Jiang C, Dvornyk V, Deng HW (2006) Genetic determination and correlation of body mass index and bone mineral density at the spine and hip in Chinese Han ethnicity. Osteoporos Int 17(1):119–124

    Article  PubMed  Google Scholar 

  42. Livshits G, Deng HW, Nguyen TV, Yakovenko K, Recker RR, Eisman JA (2004) Genetics of bone mineral density: evidence for a major pleiotropic effect from an intercontinental study. J Bone Miner Res 19(6):914–923

    Article  PubMed  Google Scholar 

  43. Medina-Gomez C, Kemp JP, Estrada K et al (2012) Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet 8:e1002718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. International Physical Activity Questionnaire (2005) Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)—short and long forms. http://www.springer.com/home?SGWID=0-0-1003-0-0&aqId=2642693&checkval=f8ea8104a38699377b8a23954591c49e. Accessed 17 Mar 2014

Download references

Acknowledgments

The authors gratefully acknowledge all of the families who participated in the GAO Project. Without them, this work could never have been accomplished. The project was partially supported by the National Fund of Sanitary Investigations (FIS PI 11/01175). G. Athanasiadis was supported by the Subprograma Nacional de Contratación e Incorporación de Investigadores Juan de la Cierva (MICINN). We thank W. H. Stone for his helpful advice and constructive discussions.

Disclosure

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nerea Hernandez-de Sosa.

Additional information

The authors declare that they have no competing interests.

Appendix

Appendix

Definitions

  • Level of sun exposure was defined as the weekly number of hours of exposure between 11:00 am and 2:00 pm.

  • Dietary calcium intake was defined as the number of glasses of milk or portions of yogurt or cheese that were consumed weekly.

  • Physical activity was quantified through the International Physical Activity Questionnaire [44]. Activity was classified as high, moderate, or low on the categorical score.

  • Smoking habit was evaluated as either ongoing or finished. Consumption was calculated as packs per year, and when finished, nonsmoking time was measured in years.

  • Alcohol habit was defined as nonconsumption, low consumption (less than 30 g/day or 3 units), moderate consumption (30–40 g/day or 3–4 units), and high consumption (more than 40 g/day or 4 units).

  • Coffee intake was estimated as 0, 1–2, 2–4, or >4 cups of coffee per day. Weight was measured in kilograms (within 0.1 kg of accuracy), height in centimeters (within 0.5 cm of accuracy), and BMI (kg/m2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sosa, N.Hd., Athanasiadis, G., Malouf, J. et al. Heritability of Bone Mineral Density in a Multivariate Family-Based Study. Calcif Tissue Int 94, 590–596 (2014). https://doi.org/10.1007/s00223-014-9852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9852-9

Keywords

Navigation