Skip to main content
Log in

Finite time blow-up and condensation for the bosonic Nordheim equation

  • Published:
Inventiones mathematicae Aims and scope

Abstract

The homogeneous bosonic Nordheim equation is a kinetic equation describing the dynamics of the distribution of particles in the space of moments for a homogeneous, weakly interacting, quantum gas of bosons. We show the existence of classical solutions of the homogeneous bosonic Nordheim equation that blow up in finite time. We also prove finite time condensation for a class of weak solutions of the kinetic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baier, R., Stockamp, T.: Kinetic equations for Bose–Einstein condensates from the \(2PI\) effective action (2004). arxiv:hep-ph/0412310

  2. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  3. Carleman, T.: Problèmes mathématiques dans la théorie cinétique des gazs. Publ. Sci. Inst. Mittag-Leffler, vol. 2. Almqvist & Wiksells Boktryckeri Ab, Uppsala (1957)

  4. Carleman, T.: Sur la théorie de l’équation intégro-differentielle de Boltzmann. Acta Math. 60, 91–146 (1933)

    Article  MathSciNet  Google Scholar 

  5. Dunford, N., Schwartz, J.T.: Linear Operators, Part I. General Theory. Wiley, New York (1963)

  6. Eckern, U.: Relaxation processes in a condensed bose gas. J. Low Temp. Phys. 54, 333–359 (1984)

    Article  Google Scholar 

  7. Escobedo, M., Mischler, S., Velázquez, J.J.L.: On the fundamental solution of a linearized Uehling Uhlenbeck equation. Arch. Ration. Mech. Anal. 186(2), 309–349 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Escobedo, M., Mischler, S., Velázquez, J.J.L.: Singular solutions for the Uehling Uhlenbeck equation. Proc. R. Soc. Edinb. 138A, 67–107 (2008)

    Google Scholar 

  9. Frechet, M.: Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22(1), 1–72 (1906)

    Article  MATH  Google Scholar 

  10. Gardiner, C.W., Lee, M.D., Ballagh, R.J., Davis, M.J., Zoller, P.: Quantum kinetic theory of condensate growth: comparison of experiment and theory. Phys. Rev. Lett. 81, 5266–5269 (1998)

    Article  Google Scholar 

  11. Huang, K.: Statistical Mechanics. Wiley, New York (1963)

  12. Huang, K., Yang, C.N.: Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev. 105(3), 765–767 (1957)

    Article  Google Scholar 

  13. Imamovič-Tomasovič, M., Griffin, A.: Coupled Hartree–Fock–Bogoliubov kinetic equations for a trapped bose gas. Phys. Rev. A 60, 494–503 (1999)

    Article  Google Scholar 

  14. Josserand, C., Pomeau, Y., Rica, S.: Self-similar singularities in the kinetics of condensation. J. Low Temp. Phys. 145, 231–265 (2006)

    Article  Google Scholar 

  15. Kikuchi, S., Nordheim, L.W.: Über die kinetische Fundamentalgleichung in der Quantenstatistik. Zeitschrift für Physik A Hadrons Nuclei 60, 652–662 (1930)

    MATH  Google Scholar 

  16. Lacaze, R., Lallemand, P., Pomeau, Y., Rica, S.: Dynamical formation of a Bose–Einstein condensate. Phys. D 152–153, 779–786 (2001)

    Article  MathSciNet  Google Scholar 

  17. Levich, E., Yakhot, V.: Kinetics of phase transition in ideal and weakly interacting Bose gas. J. Low Temp. Phys. 27, 107–124 (1977)

    Article  Google Scholar 

  18. Levich, E., Yakhot, V.: Time development of coherent and superfluid properties in the course of a \(\lambda \)-transition. J. Phys. A Math. Gener. 11, 2237–2254 (1978)

    Article  Google Scholar 

  19. Lu, X.: On isotropic distributional solutions to the Boltzmann equation for Bose–Einstein particles. J. Stat. Phys. 116, 1597–1649 (2004)

    Article  MATH  Google Scholar 

  20. Lu, X.: The Boltzmann equation for Bose–Einstein particles: velocity concentration and convergence to equilibrium. J. Stat. Phys. 119, 1027–1067 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lu, X.: The Boltzmann equation for Bose–Einstein particles: condensation in finite time. J. Stat. Phys. 150, 1138–1176 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéare 16, 467–501 (1999)

  23. Nordheim, L.W.: On the kinetic method in the new statistics and its application in the electron theory of conductivity. Proc. R. Soc. Lond. A 119, 689–698 (1928)

    Article  MATH  Google Scholar 

  24. Povzner, A.J.: The Boltzmann equation in the kinetic theory of gases. Am. Math. Soc. Transl. 47(2), 193–214 (1965)

    MATH  Google Scholar 

  25. Proukakis, N.P., Burnett, K., Stoof, H.T.C.: Microscopic treatment of binary interactions in the nonequilibrium dynamics of partially Bose condensed trapped gases. Phys. Rev. A 57, 1230–1247 (1998)

    Article  Google Scholar 

  26. Pulvirenti, M.: The weak-coupling limit of large classical and quantum systems. In: International Congress of Mathematicians, vol. III, pp. 229–256 (2006)

  27. Semikov, D.V., Tkachev, I.I.: Kinetics of Bose condensation. Phys. Rev. Lett. 74, 3093–3097 (1995)

    Article  Google Scholar 

  28. Semikov, D.V., Tkachev, I.I.: Condensation of Bosons in the kinetic regime. Phys. Rev. D 55(2), 489–502 (1997)

    Article  Google Scholar 

  29. Spohn, H.: Kinetics of the Bose–Einstein condensation. Phys. D Nonlinear Phenom. 239, 627–634 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Stoof, H.T.C.: Condensate formation in a Bose gas. In: Griffin, A., Snoke, D.W., Stringari, S. (eds.) Bose Einstein Condensation. Cambridge University Press, London (1994)

  31. Svistunov, B.V.: Highly nonequilibrium Bose condensation in a weakly interacting gas. J. Moscow Phys. Soc. 1, 373–390 (1991)

  32. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 1. Elsevier Science, London (2002)

  33. Zaremba, E., Nikuni, T., Griffin, A.: Dynamics of trapped Bose gases at finite temperatures. J. Low Temp. Phys. 116, 277–345 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by DGES Grant 2011-29306-C02-00, Basque Government Grant IT641-13, the Hausdorff Center for Mathematics of the University of Bonn and the Collaborative Research Center The Mathematics of Emergent Effects (DFG SFB 1060, University of Bonn). The authors thank the hospitality of the Isaac Newton Institute of the University of Cambridge where this work was begun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Escobedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobedo, M., Velázquez, J.J.L. Finite time blow-up and condensation for the bosonic Nordheim equation. Invent. math. 200, 761–847 (2015). https://doi.org/10.1007/s00222-014-0539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0539-7

Navigation