Skip to main content
Log in

Independent roles for the dorsal paraflocculus and vermal lobule VII of the cerebellum in visuomotor coordination

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Two distinct areas of cerebellar cortex, vermal lobule VII and the dorsal paraflocculus (DPFl) receive visual input. To help understand the visuomotor functions of these two regions, we compared their afferent and efferent connections using the tracers wheatgerm agglutinin horseradish peroxidase (WGA-HRP) and biotinilated dextran amine (BDA). The sources of both mossy fibre and climbing fibre input to the two areas are different. The main mossy fibre input to lobule VII is from the nucleus reticularis tegmenti pontis (NRTP), which relays visual information from the superior colliculus, while the main mossy fibre input to the DPFl is from the pontine nuclei, relaying information from cortical visual areas. The DPFl and lobule VII both also receive mossy fibre input from several common brainstem regions, but from different subsets of cells. These include visual input from the dorsolateral pons, and vestibular–oculomotor input from the medial vestibular nucleus (MVe) and the nucleus prepositus hypoglossi (Nph). The climbing fibre input to the two cerebellar regions is from different subdivisions of the inferior olivary nuclei. Climbing fibres from the caudal medial accessory olive (cMAO) project to lobule VII, while the rostral MAO (rMAO) and the principal olive (PO) project to the DPFl. The efferent projections from lobule VII and the DPF1 are to all of the recognised oculomotor and visual areas within the deep cerebellar nuclei, but to separate territories. Both regions play a role in eye movement control. The DPFl may also have a role in visually guided reaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3N:

Nucleus of the third (oculomotor) cranial nerve

4N:

Nucleus of the fourth (trochlear) cranial nerve

VII, VIII, IX:

Vermal lobules

12N:

Hypoglossal (12th) nerve nucleus

gVII:

Genu of the facial (seventh) nerve

Cr I:

Cerebellar hemisphere Crus I

Cr II:

Cerebellar hemisphere Crus II

DPFl:

Dorsal paraflocculus

EOLRt:

Epi-olivary lateral reticular nucleus

Fl:

flocculus

β:

Beta subnucleus

DAO:

Dorsal accessory olive

dc:

Dorsal cap

dmcc:

Dorsomedial cell column

MAO:

Medial accessory olive

cMAO:

Caudal MAO

rMAO:

Rostral MAO

PO:

Principal olive

dlPO:

Dorsal lamella of the principal olive

vlPO:

Ventral lamella of the principal olive

vlo:

Ventrolateral outgrowth

IPN:

Interpeduncular nucleus

LVN:

Lateral vestibular nucleus

MVe:

Medial vestibular nucleus

NL:

Lateral cerebellar (dentate) nucleus

NIA:

Anterior interposed cerebellar nucleus

NIP:

Posterior interposed cerebellar nucleus

NM:

Medial (fastigial) cerebellar nucleus

Nph:

Nucleus prepositus hypoglossi

Nrgc:

Nucleus reticularis gigantocellularis

Nrpa:

Dorsal raphé nucleus

Nrpc:

Nucleus reticularis pontis caudalis

Nrpo:

Nucleus reticularis pontis oralis

NRTP:

nucleus reticularis tegmenti pontis

PAG:

Periaqueductal gray

ped:

Cerebral peduncle

pl:

Petrosal lobule

PMD:

Paramedian lobule

PN:

Pontine nuclei

dp:

Dorsal peduncular

dl:

Dorsolateral

dm:

Dorsomedial

l:

Lateral

m:

Medial

r:

Rostral

v:

Ventral

PRN:

Paramedian reticular nucleus

Nrpd:

Dorsal paramedian reticular nucleus

Nrpv:

Ventral paramedian reticular nucleus

Rn:

Raphe nuclei

SO:

Superior olive

References

  • Asanuma C, Thach WT, Jones EG (1983) Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Res 286:299–322

    PubMed  CAS  Google Scholar 

  • Baizer JS, Kralj-Hans I, Glickstein M (1999) Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophysiol 81:1960–1965

    PubMed  CAS  Google Scholar 

  • Baker J, Gibson A, Glickstein M, Stein J (1976) Visual cells in the pontine nuclei of the cat. J Physiol 255:415–433

    PubMed  CAS  Google Scholar 

  • Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P (1999) Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci 19:10931–10939

    PubMed  CAS  Google Scholar 

  • Batton RR III, Jayaraman A, Ruggiero D, Carpenter MB (1977) Fastigial efferent projections in the monkey: an autoradiographic study. J Comp Neurol 174:281–305

    Article  PubMed  Google Scholar 

  • Berkley KJ, Hand PJ (1978) Projections to the inferior olive of the cat. II. Comparisons of input from the gracile, cuneate and the spinal trigeminal nuclei. J Comp Neurol 180:253–264

    Article  PubMed  CAS  Google Scholar 

  • Bjaalie JG, Sudbo J, Brodal P (1997) Corticopontine terminal fibres form small scale clusters and large scale lamellae in the cat. Neuroreport 8:1651–1655

    Article  PubMed  CAS  Google Scholar 

  • Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, Sladek JR Jr (1973) Morphology of the inferior olivary complex of the rhesus monkey (Macaca mulatta). J Comp Neurol 152:299–316

    Article  PubMed  CAS  Google Scholar 

  • Brodal P, Brodal A (1981) The olivocerebellar projection in the monkey. Experimental studies with the method of retrograde tracing of horseradish peroxidase. J Comp Neurol 201:375–393

    Article  PubMed  CAS  Google Scholar 

  • Brodal A, Gogstad AC (1957) Afferent connexions of the paramedian reticular nucleus of the medulla oblongata in the cat; an experimental study. Acta Anat (Basel) 30:133–151

    CAS  Google Scholar 

  • Brodal A, Pompeiano O (1957) The vestibular nuclei in cat. J Anat 91:438–454

    PubMed  CAS  Google Scholar 

  • Buneo CA, Andersen RA (2005) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, Corrected proof, available online 21/11/2005 (in press)

  • Büttner-Ennever JA, Büttner U, Cohen B, Baumgartner G (1982) Vertical glaze paralysis and the rostral interstitial nucleus of the medial longitudinal fasciculus. Brain 105:125–149

    Article  PubMed  Google Scholar 

  • Büttner U, Fuchs AF, Markert-Schwab G, Buckmaster P (1991) Fastigial nucleus activity in the alert monkey during slow eye and head movements. J Neurophysiol 65:1360–1371

    PubMed  Google Scholar 

  • Büttner U, Straube A, Spuler A (1994) Saccadic dysmetria and “intact” smooth pursuit eye movements after bilateral deep cerebellar nuclei lesions. J Neurol Neurosurg Psychiatry 57:832–834

    Article  PubMed  Google Scholar 

  • Chan-Palay V, Palay SL, Wu JY (1982) Sagittal cerebellar microbands of taurine neurons: immunocytochemical demonstration by using antibodies against the taurine-synthesizing enzyme cysteine sulfinic acid decarboxylase. Proc Natl Acad Sci USA 79:4221–4225

    Article  PubMed  CAS  Google Scholar 

  • Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21:6283–6291

    PubMed  CAS  Google Scholar 

  • Dalezios Y, Scudder CA, Highstein SM, Moschovakis AK (1998) Anatomy and physiology of the primate interstitial nucleus of Cajal. II. Discharge pattern of single efferent fibres. J Neurophysiol 80:3100–3111

    PubMed  CAS  Google Scholar 

  • Deleu D, Michotte A, Ebinger G (1997) Impairment of smooth pursuit in pontine lesions: functional topography based on MRI and neuropathologic findings. Acta Neurol Belg 97:28–35

    PubMed  CAS  Google Scholar 

  • Frankfurter A, Weber JT, Royce GJ, Strominger NL, Harting JK (1976) An autoradiographic analysis of the tecto-olivary projection in primates. Brain Res 118:245–257

    Article  PubMed  CAS  Google Scholar 

  • Fries W (1990) Pontine projection from striate and prestriate visual cortex in the macaque monkey: an anterograde study. Vis Neurosci 4:205–216

    Article  PubMed  CAS  Google Scholar 

  • Fuchs AF, Robinson FR, Straube A (1993) Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol 70:1723–1740

    PubMed  CAS  Google Scholar 

  • Fuchs AF, Robinson FR, Straube A (1994) Participation of the caudal fastigial nucleus in smooth-pursuit eye movements. I. Neuronal activity. J Neurophysiol 72:2714–2728

    PubMed  CAS  Google Scholar 

  • Gerrits N (1990) Vestibular nuclear complex. In: The human nervous system. Academic, Philadelphia, pp 863–888

  • Gerrits NM, Epema AH, Voogd J (1984) The mossy fibre projection of the nucleus reticularis tegmenti pontis to the flocculus and adjacent ventral paraflocculus in the cat. Neuroscience 11:627–644

    Article  PubMed  CAS  Google Scholar 

  • Gibson AR, Hansma DI, Houk JC, Robinson FR (1984) A sensitive low artifact TMB procedure for the demonstration of WGA-HRP in the CNS. Brain Res 298:235–241

    Article  PubMed  CAS  Google Scholar 

  • Gibson AR, Horn KM, Pong M, Van Kan PL (1998) Construction of a reach-to-grasp (discussion 245–251). Novartis Found Symp 218:233–245

    Article  PubMed  CAS  Google Scholar 

  • Giolli RA, Gregory KM, Suzuki DA, Blanks RH, Lui F, Betelak KF (2001) Cortical and subcortical afferents to the nucleus reticularis tegmenti pontis and basal pontine nuclei in the macaque monkey. Vis Neurosci 18:725–740

    Article  PubMed  CAS  Google Scholar 

  • Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J (1994) Visual pontocerebellar projections in the macaque. J Comp Neurol 349:51–72

    Article  PubMed  CAS  Google Scholar 

  • Glickstein M, May J, Mercier B (1990) Visual corticopontine and tectopontine projections in the macaque. Arch Ital Biol 128:273–293

    PubMed  CAS  Google Scholar 

  • Glickstein M, May JG III, Mercier BE (1985) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235:343–359

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ME, Wurtz RH (1972) Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J Neurophysiol 35:542–559

    PubMed  CAS  Google Scholar 

  • Gonzalo-Ruiz A, Leichnetz GR (1990) Connections of the caudal cerebellar interpositus complex in a new world monkey (Cebus apella). Brain Res Bull 25:919–927

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Voogd J, Freedman SL (1979) The parasagittal zonation within the olivocerebellar projection. II. Climbing fibre distribution in the intermediate and hemispheric parts of cat cerebellum. J Comp Neurol 183:551–601

    Article  PubMed  CAS  Google Scholar 

  • Harting JK (1977) Descending pathways from the superior colliculus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612

    Article  PubMed  CAS  Google Scholar 

  • Heiser LM, Colby CL (2006) Spatial updating in area LIP is independent of saccade direction. J Neurophysiol 95:2751–2767

    Article  PubMed  Google Scholar 

  • Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Noda H, Sugita S (1989) Olivocerebellar and cerebelloolivary connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 284:463–488

    Article  PubMed  CAS  Google Scholar 

  • Jeneskog T (1987) Termination in posterior and anterior cerebellum of a climbing fibre pathway activated from the nucleus of Darkschewitsch in the cat. Brain Res 412:185–189

    Article  PubMed  CAS  Google Scholar 

  • Kalil K (1979) Projections of the cerebellar and dorsal column nuclei upon the inferior olive in the rhesus monkey: an autoradiographic study. J Comp Neurol 188:43–62

    Article  PubMed  CAS  Google Scholar 

  • Kaneko CR (1997) Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J Neurophysiol 78:1753–1768

    PubMed  CAS  Google Scholar 

  • Kaneko CR (1999) Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys II. Pursuit, vestibular, and optokinetic responses. J Neurophysiol 81:668–681

    PubMed  CAS  Google Scholar 

  • Kaneko CRS, Fuchs A (2006) Effect of pharmacological inactivation of nucleus reticularis tegmenti pontis on saccadic eye movements in the monkey. J Neurophysiol (in press)

  • Kase M, Nagata R, Kato M (1986) Saccade-related activity of periaqueductal gray matter of the monkey. Invest Ophthalmol Vis Sci 27:1165–1169

    PubMed  CAS  Google Scholar 

  • Klier EM, Wang H, Constantin AG, Crawford JD (2002) Midbrain control of three-dimensional head orientation. Science 295:1314–1316

    Article  PubMed  CAS  Google Scholar 

  • Krauzlis RJ, Miles FA (1998) Role of the oculomotor vermis in generating pursuit and saccades: effects of microstimulation. J Neurophysiol 80:2046–2062

    PubMed  CAS  Google Scholar 

  • Langer T, Fuchs AF, Scudder CA, Chubb MC (1985) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235: 1–25

    Article  PubMed  CAS  Google Scholar 

  • Luschei ES, Fuchs AF (1972) Activity of brain stem neurons during eye movements of alert monkeys. J Neurophysiol 35:445–461

    PubMed  CAS  Google Scholar 

  • Lynch JC, Hoover JE, Strick PL (1994) Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp Brain Res 100:181–186

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi M, Kusama T (1970) Mesodiencephalic projections to the inferior olive and the vestibular and perihypoglossal nuclei. Brain Res 17:133–136

    Article  PubMed  CAS  Google Scholar 

  • Marple-Horvat DE, Stein JF (1990) Neuronal activity in the lateral cerebellum of trained monkeys, related to visual stimuli or to eye movements. J Physiol 428:595–614

    PubMed  CAS  Google Scholar 

  • Matsuzaki R, Kyuhou S (1997) Pontine neurons which relay projections from the superior colliculus to the posterior vermis of the cerebellum in the cat: distribution and visual properties. Neurosci Lett 236:99–102

    Article  PubMed  CAS  Google Scholar 

  • May PJ, Hartwich-Young R, Nelson J, Sparks DL, Porter JD (1990) Cerebellotectal pathways in the macaque: implications for collicular generation of saccades. Neuroscience 36:305–324

    Article  PubMed  CAS  Google Scholar 

  • McCurdy ML, Hansma DI, Houk JC, Gibson AR (1987) Selective projections from the cat red nucleus to digit motor neurons. J Comp Neurol 265:367–379

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21:700–712

    PubMed  CAS  Google Scholar 

  • Mihailoff GA, McArdle CB, Adams CE (1981) The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat. I. Nissl and Golgi studies. J Comp Neurol 195:181–201

    Article  PubMed  CAS  Google Scholar 

  • Mower G, Gibson A, Glickstein M (1979) Tectopontine pathway in the cat: laminar distribution of cells of origin and visual properties of target cells in dorsolateral pontine nucleus. J Neurophysiol 42:1–15

    PubMed  CAS  Google Scholar 

  • Mustari MJ, Fuchs AF, Wallman J (1988) Response properties of dorsolateral pontine units during smooth pursuit in the rhesus macaque. J Neurophysiol 60:664–686

    PubMed  CAS  Google Scholar 

  • Noda H, Fujikado T (1987) Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation. J Neurophysiol 58:359–378

    PubMed  CAS  Google Scholar 

  • Noda H, Mikami A (1986) Discharges of neurons in the dorsal paraflocculus of monkeys during eye movements and visual stimulation. J Neurophysiol 56:1129–1146

    PubMed  CAS  Google Scholar 

  • Noda H, Murakami S, Yamada J, Tamada J, Tamaki Y, Aso T (1988) Saccadic eye movements evoked by microstimulation of the fastigial nucleus of macaque monkeys. J Neurophysiol 60:1036–1052

    PubMed  CAS  Google Scholar 

  • Noda H, Sato H, Ikeda Y, Sugita S (1992) Fastigiofugal fibres encoding horizontal and vertical components of saccades as determined by microstimulation in monkeys. Neurosci Res 13:163–173

    Article  PubMed  CAS  Google Scholar 

  • Noda H, Sugita S, Ikeda Y (1990) Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 302:330–348

    Article  PubMed  CAS  Google Scholar 

  • Olucha F, Martinez-Garcia F, Lopez-Garcia C (1985) A new stabilizing agent for the tetramethyl benzidine (TMB) reaction product in the histochemical detection of horseradish peroxidase (HRP). J Neurosci Methods 13:131–138

    Article  PubMed  CAS  Google Scholar 

  • Onodera S, Hicks TP (1998) Projections from substantia nigra and zona incerta to the cat’s nucleus of Darkschewitsch. J Comp Neurol 396:461–482

    Article  PubMed  CAS  Google Scholar 

  • Optican LM, Robinson DA (1980) Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol 44:1058–1076

    PubMed  CAS  Google Scholar 

  • Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Precht W, Strata P (1980) On the pathway mediating optokinetic responses in vestibular nuclear neurons. Neuroscience 5:777–787

    Article  PubMed  CAS  Google Scholar 

  • Quian Quiroga R, Snyder LH, Batista AP, Cui H, Andersen RA (2006) Movement intention is better predicted than attention in the posterior parietal cortex. J Neurosci 26:3615–3620

    Article  PubMed  CAS  Google Scholar 

  • Reiner A, Veenman CL, Medina L, Jiao Y, Del Mar N, Honig MG (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Methods 103:23–37

    Article  PubMed  CAS  Google Scholar 

  • Ritchie L (1976) Effects of cerebellar lesions on saccadic eye movements. J Neurophysiol 39:1246–1256

    PubMed  CAS  Google Scholar 

  • Robinson FR (2000) Role of the cerebellar posterior interpositus nucleus in saccades I. Effect of temporary lesions. J Neurophysiol 84:1289–1302

    PubMed  CAS  Google Scholar 

  • Rye DB, Saper CB, Wainer BH (1984) Stabilization of the tetramethylbenzidine (TMB) reaction product: application for retrograde and anterograde tracing, and combination with immunohistochemistry. J Histochem Cytochem 32:1145–1153

    PubMed  CAS  Google Scholar 

  • Schiller PH, Stryker M (1972) Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol 35:915–924

    PubMed  CAS  Google Scholar 

  • Shook BL, Schlag-Rey M, Schlag J (1990) Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. J Comp Neurol 301:618–642

    Article  PubMed  CAS  Google Scholar 

  • Snyder R, Stowell A (1944) Receving areas of the tactile, auditory and visual systems in the cerebellum. J Neurophysiol 7:331–358

    Google Scholar 

  • Sousa-Pinto A (1969) Experimental anatomical demonstration of a cortico-olivary projection from area 6 (supplementary motor area?) in the cat. Brain Res 16:73–83

    Article  PubMed  CAS  Google Scholar 

  • Sousa-Pinto A, Brodal A (1969) Demonstration of a somatotopical pattern in the cortico-olivary projection in the cat. An experimental–anatomical study. Exp Brain Res 8:364–386

    Article  PubMed  CAS  Google Scholar 

  • Straube A, Helmchen C, Robinson F, Fuchs A, Büttner U (1994) Saccadic dysmetria is similar in patients with a lateral medullary lesion and in monkeys with a lesion of the deep cerebellar nucleus. J Vestib Res 4:327–333

    PubMed  CAS  Google Scholar 

  • Strominger NL, Truscott TC, Miller RA, Royce GJ (1979) An autoradiographic study of the rubroolivary tract in the rhesus monkey. J Comp Neurol 183:33–45

    Article  PubMed  CAS  Google Scholar 

  • Sugita S, Noda H (1991) Pathways and terminations of axons arising in the fastigial oculomotor region of macaque monkeys. Neurosci Res 10:118–136

    Article  PubMed  CAS  Google Scholar 

  • Suzuki DA, Keller EL (1984) Visual signals in the dorsolateral pontine nucleus of the alert monkey: their relationship to smooth-pursuit eye movements. Exp Brain Res 53:473–478

    Article  PubMed  CAS  Google Scholar 

  • Suzuki DA, May JG, Keller EL, Yee RD (1990) Visual motion response properties of neurons in dorsolateral pontine nucleus of alert monkey. J Neurophysiol 63:37–59

    PubMed  CAS  Google Scholar 

  • Suzuki DA, Noda H, Kase M (1981) Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. J Neurophysiol 46:1120–1139

    PubMed  CAS  Google Scholar 

  • Thielert CD, Thier P (1993) Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: a study using retrograde tracers. J Comp Neurol 337:113–126

    Article  PubMed  CAS  Google Scholar 

  • Thier P, Bachor A, Faiss J, Dichgans J, Koenig E (1991) Selective impairment of smooth-pursuit eye movements due to an ischemic lesion of the basal pons. Ann Neurol 29:443–448

    Article  PubMed  CAS  Google Scholar 

  • Thier P, Dicke PW, Haas R, Thielert CD, Catz N (2002) The role of the oculomotor vermis in the control of saccadic eye movements. Ann N Y Acad Sci 978:50–62

    Article  PubMed  Google Scholar 

  • Thier P, Koehler W, Buettner UW (1988) Neuronal activity in the dorsolateral pontine nucleus of the alert monkey modulated by visual stimuli and eye movements. Exp Brain Res 70:496–512

    Article  PubMed  CAS  Google Scholar 

  • van Kan PL, Houk JC, Gibson AR (1993) Output organization of intermediate cerebellum of the monkey. J Neurophysiol 69:57–73

    PubMed  Google Scholar 

  • Voogd J (1964) The cerebellum of the cat; structure and fibre connexions. Davis, Philadelphia

    Google Scholar 

  • Wiesendanger R, Wiesendanger M (1987) Topography of the corticofugal projection to the lateral reticular nucleus in the monkey. J Comp Neurol 256:570–580

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Clarke RJ, Gamlin PD (1996) Behavior of luminance neurons in the pretectal olivary nucleus during the pupillary near response. Exp Brain Res 112:158–162

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Gamlin PD (1998) Neurons in the posterior interposed nucleus of the cerebellum related to vergence and accommodation. I. Steady-state characteristics. J Neurophysiol 79:1255–1269

    PubMed  CAS  Google Scholar 

  • Zuk A, Rutherford JG, Gwyn DG (1983) Projections from the interstitial nucleus of Cajal to the inferior olive and to the spinal cord in cat: a retrograde fluorescent double-labeling study. Neurosci Lett 38:95–101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Human Frontiers Research Program and the Volkswagen Foundation. We are grateful to Alan Gibson and Sandy Arthurs for providing the image analysis software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Glickstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kralj-Hans, I., Baizer, J.S., Swales, C. et al. Independent roles for the dorsal paraflocculus and vermal lobule VII of the cerebellum in visuomotor coordination. Exp Brain Res 177, 209–222 (2007). https://doi.org/10.1007/s00221-006-0661-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0661-x

Keywords

Navigation