Skip to main content

Axonal Trajectories of Single Climbing and Mossy Fiber Neurons in the Cerebellar Cortex and Nucleus

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

A major factor in determining the function of a particular cerebellar cortical region depends upon its afferent and efferent connections. Two distinct afferent pathways convey information to the cerebellar cortex: climbing fibers and mossy fibers. A large amount of fundamental knowledge about afferent projections to the cerebellum from various precerebellar nuclei has been accumulated using new anatomical methods, including knowledge about the axonal trajectories of single climbing fiber neurons in the inferior olive and single mossy fiber neurons of multiple sources. Knowledge about the morphologies of single mossy fiber neurons and climbing fiber neurons in the cerebellum is essential for understanding the function of the cerebellum. This chapter describes and compares the entire axonal trajectories of single olivocerebellar (OC) neurons, and single mossy fiber neurons in the lateral reticular nucleus, pontine nucleus, dorsal column nucleus and spinal cord in the cerebellar cortex and nucleus. Furthermore, this chapter will deal with the relationship between the longitudinal cortical and nuclear compartmentations revealed by aldolase C expression and the longitudinal bands of cortical and nuclear axonal terminals of single climbing fiber neurons and single mossy fiber neurons. We discuss the functional significance of these arrangements for the generation of the final output from the cerebellar nuclei which target extracerebellar structures for control of movement and other functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen GI, Tsukahara N (1974) Cerebrocerebellar communication systems. Physiol Rev 54:957–1006

    CAS  PubMed  Google Scholar 

  • Andersen P, Eccles JC, Voorhoeve PE (1964) Postsynaptic inhibition of cerebellar Purkinje cells. J Neurophysiol 27:1138–1153

    CAS  PubMed  Google Scholar 

  • Biswas MS, Luo Y, Sarpong GA, Sugihara I (2019) Divergent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse. J Comp Neurol 527:1966–1985

    Google Scholar 

  • Brand S, Dahl AL, Mugnaini E (1976) The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study. Exp Brain Res 26:39–58

    CAS  PubMed  Google Scholar 

  • Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291:538–552

    CAS  PubMed  Google Scholar 

  • Brodal A (1981) Neurological anatomy: in relation to clinical medicine. Oxford University Press, New York

    Google Scholar 

  • Buisseret-Delmas C, Angaut P (1993) The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol 40:63–87

    CAS  PubMed  Google Scholar 

  • Cajal SR (1911) Histologie du Systeme Nerveux de l’Homme et des Vertebre, vol II. Maloine, Paris

    Google Scholar 

  • Chan-Palay V (1977) Cerebellar dentate nucleus, organization, cytology, and transmitters. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Chan-Palay V, Palay DL, Brown JT, Van Itallie C (1977) Sagittal organization of olivocerebellar and reticulocerebellar projections: autoradiographic studies with 35 S-methionine. Exp Brain Res 30:561–576

    CAS  PubMed  Google Scholar 

  • Dietrichs E, Bjaalie JG, Brodal P (1983) Do pontocerebellar fibers send collaterals to the cerebellar nuclei? Brain Res 259:127–131

    CAS  PubMed  Google Scholar 

  • Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Eccles JC, Sabah NH, Táboriková H (1974) The pathways responsible for excitation and inhibition of fastigial neurons. Exp Brain Res 19:78–99

    CAS  PubMed  Google Scholar 

  • Ekerot CF, Larson B (1980) Termination in overlapping sagittal zones in cerebellar anterior lobe of mossy and climbing fiber paths activated from dorsal funiculus. Exp Brain Res 38:163–172

    CAS  PubMed  Google Scholar 

  • Ekerot CF, Larson B (1982) Branching of olivary axons to innervate pairs of sagittal zones in the cerebellar anterior lobe of the cat. Exp Brain Res 48:185–198

    CAS  PubMed  Google Scholar 

  • Fujita H, Aoki H, Ajioka I, Yamazaki M, Abe M, Oh-Nishi A, Sakimura K, Sugihara I (2014) Detailed expression pattern of Aldolase C (Aldoc) in the cerebellum, retina and other areas of the CNS studied in Aldoc-Venus Knock-in mice. PLoS One 9:e86679

    PubMed  PubMed Central  Google Scholar 

  • Futami T, Kano M, Sento S, Shinoda Y (1986) Synaptic organization of the cerebello-thalamo- cerebral pathway in the cat. III. Cerebellar input to corticofugal neurons destined for different subcortical nuclei in areas 4 and 6. Neurosci Res 3:321–344

    CAS  PubMed  Google Scholar 

  • Garwicz M, Jortntell H, Ekerot CF (1998) Cutaneous receptive fields and topography of mossy fibers and climbing fibers projecting to cat cerebellar C3 zone. J Physiol Lond 512:277–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerrits NM, Voogd J (1987) The projection of the nucleus reticularis tegmenti pontis and adjacent regions of the pontine nuclei to the central cerebellar nuclei in the cat. J Comp Neurol 258:52–62

    CAS  PubMed  Google Scholar 

  • Gerrits NM, Voogd J, Nas WS (1985) Cerebellar and olivary projections of the external and rostral internal cuneate nuclei in the cat. Exp Brain Res 57:239–255

    CAS  PubMed  Google Scholar 

  • Gravel C, Hawkws R (1990) Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cells compartments and the organization of the spinocerebellar projection. J Comp Neurol 291:79–102

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Voogd J (1977) The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of the cat cerebellum. J Comp Neurol 174:417–488

    CAS  PubMed  Google Scholar 

  • Hawkes R, Leclerc N (1987) Antigenic map of the rat cerebellar cortex: the distribution of parasagittal bands as revealed by monoclonal anti-Purkinje cell antibody mobA113. J Comp Neurol 256:29–41

    CAS  PubMed  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Ito M, Yoshida M, Obata K, Kawai N, Udo M (1970) Inhibitory control of intracerebellar nuclei by the Purkinje cell axons. Exp Brain Res 10:64–80

    CAS  PubMed  Google Scholar 

  • Jahnsen H (1986) Electrophsyiological characteristics of neurons in the Guinea-pig deep cerebellar nuclei in vitro. J Physiol Lond 372:129–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jankowska E, Rastad J, Westman J (1976) Intracellular application of horseradish peroxidase and its light and electron microscopical appearance in spinocervical tract cells. Brain Res 105:555–562

    Google Scholar 

  • Jansen J, Brodal A (1940) Experimental studies on the intrinsic fibers of the cerebellum. II. The corticonuclear projection. J Comp Neurol 73:267–321

    Google Scholar 

  • Jorntell H, Ekerot CF (2006) Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J Neurosci 26:11786–11797

    PubMed  PubMed Central  Google Scholar 

  • Kawamura K, Hashikawa T (1979) Olivocerebellar projections in the cat studied by means of anterograde axonal transport of labeled amino acids as tracers. Neuroscience 4:1615–1633

    CAS  PubMed  Google Scholar 

  • Kitai S, Kocsis JD, Preston RJ, Sugimori M (1976) Monosynaptic inputs to caudate neurons identified by intracellular injection of horseradish peroxidase. Brain Res 109:601–606

    CAS  PubMed  Google Scholar 

  • Kitai ST, McCrea RA, Preston RJ, Bishop GA (1977) Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. I. Climbing fiber system. Brain Res 122:197–214

    CAS  PubMed  Google Scholar 

  • Krieger C, Shinoda Y, Smith AM (1985) Labeling of cerebellar mossy fiber afferents with intra- axonal horseradish peroxidase. Exp Brain Res 59:414–417

    CAS  PubMed  Google Scholar 

  • Künzle H (1975) Autoradiographic tracing of the cerebellar projections from the lateral reticular nucleus in the cat. Exp Brain Res 22:255–266

    PubMed  Google Scholar 

  • Llinás R, Mühlethaler M (1988) Electrophysiology of Guinea-pig cerebellar nuclear cells in the vitro brain stem-cerebellar preparation. J Physiol Lond 404:241–258

    PubMed  PubMed Central  Google Scholar 

  • Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol Lond 305:171–195

    PubMed  PubMed Central  Google Scholar 

  • Luo Y, Patel RP, Sarpong GA, Sasamura K, Sugihara I (2017) Single axonal morphology and termination to cerebellar aldolase C stripes characterize distinct spinocerebellar projection systems originating from the thoracic spinal cord in the mouse. J Comp Neurol. 2017 Nov 21. [Epub ahead of print]. https://doi.org/10.1002/cne.24360

  • Mano N, Yamamoto K (1980) Simple-spike activity of cerebellar Purkinje cells related to visually guided wrist tracking movement in the monkey. J Neurophysiol 43:713–728

    CAS  PubMed  Google Scholar 

  • Matsushita M, Hosoya Y (1982) Spinocerebellar projections to lobules III to V of the anterior lobe in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 208:127–143

    CAS  PubMed  Google Scholar 

  • Matsushita M, Yaginuma H (1995) Projections from the central cervical nucleus to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol 353:234–246

    CAS  PubMed  Google Scholar 

  • Midtgaard J (1992) Stellate cell inhibition of Purkinje cells in the turtle cerebellum in vitro. J Physiol Lond 457:355–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mihailoff GA (1993) Cerebellar nuclear projections from the basilar pontine nuclei and nucleus reticularis tegmenti pontis as demonstrated with PHA-L tracing in the rat. J Comp Neurol 330:130–146

    CAS  PubMed  Google Scholar 

  • Na J, Sugihara I, Shinoda Y (2019) The entire trajectories of single pontocerebellar axons and their lobular and longitudinal terminal distribution patterns in multiple aldolase C positive compartments of the rat cerebellar cortex. J Comp Neurol 527:2488–2511

    Google Scholar 

  • Nieuwenhuys R, Huijzen CV, Voogd J (2008) The human central nervous system, 4th edn. Springer, New York

    Google Scholar 

  • Ohtsuka K, Noda H (1991) Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys. J Neurophysiol 65:1422–1434

    CAS  PubMed  Google Scholar 

  • Oscarsson O (1969) Termination and functional organization of the dorsal spino-olivocerebellar path. J Physiol Lond 200:129–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oscarsson O (1979) Functional units of the cerebellum-sagittal zones and microzones. Trends Neurosci 2:143–145

    Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex: cytology and organization. Springer, New York

    Google Scholar 

  • Pichitpornchai C, Rawson JA, Rees S (1994) Morphology of parallel fibers in the cerebellar cortex of the rat – an experimental light and electron-microscopic study with biocytin. J Comp Neurol 342:206–220

    CAS  PubMed  Google Scholar 

  • Pijpers A, Voogd J, Ruigrok TJH (2005) Topography of olivo-cortico-nuclear modules in the intermediate cerebellum of the rat. J Comp Neurol 492:193–213

    PubMed  Google Scholar 

  • Pijpers A, Apps R, Pardoe J, Voogd J, Ruigrok TJH (2006) Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J Neurosci 26:12067–12080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quy PN, Fujita H, Sakamoto Y, Na J, Sugihara I (2011) Projection patterns of single mossy fiber axons originating from the dorsal column nuclei mapped on the aldolase C compartments in the rat cerebellar cortex. J Comp Neurol 519:874–899

    PubMed  Google Scholar 

  • Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 19:1663–1674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruigrok TJH, Cella F (1995) Precerebellar nuclei and red nucleus. In: Paxinos G (ed) The rat nervous system, vol III, brain stem and cerebellum. Academic, Sydney

    Google Scholar 

  • Sato F, Sasaki H, Ishizuka N, Sasaki S, Mannen H (1989) Morphology of single primary vestibular afferents originating from the horizontal semicircular canal in the cat. J Comp Neurol 290:423–439

    CAS  PubMed  Google Scholar 

  • Sato F, Nakamura Y, Shinoda Y (1996) Three-dimensional analysis of cerebellar terminals and their postsynaptic components in the ventrolateral thalamus of the cat. J Comp Neurol 371:537–551

    CAS  PubMed  Google Scholar 

  • Sato F, Nakamura Y, Shinoda Y (1997) Serial electron microscopic reconstruction of axon terminals on physiologically identified thalamocortical neurons in the cat ventral lateral nucleus. J Comp Neurol 388:613–631

    CAS  PubMed  Google Scholar 

  • Schieber MH, Thach WT (1985) Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons. J Neurophysiol 54:1228–1270

    CAS  PubMed  Google Scholar 

  • Schild RF (1970) On the inferior olive of the albino rat. J Comp Neurol 140:255–260

    CAS  PubMed  Google Scholar 

  • Shinoda Y (1999) Visualization of the entire trajectory of long axons of single mammalian CNS neurons. Brain Res Bull 50:387–388

    CAS  PubMed  Google Scholar 

  • Shinoda Y, Yokota J, Futami T (1981) Divergent projection of individual corticospinal axons to motoneurons of multiple muscles in the monkey. Neurosci Lett 23:7–12

    CAS  PubMed  Google Scholar 

  • Shinoda Y, Kano M, Futami T (1985a) Synaptic organization of the cerebello-thalamo-cerebral pathway in the cat. I. Projection of individual cerebellar nuclei to single pyramidal tract neurons in areas 4 and 6. Neurosci Res 2:133–156

    CAS  PubMed  Google Scholar 

  • Shinoda Y, Futami T, Kano M (1985b) Synaptic organization of the cerebello-thalamo-cerebral pathway in the cat. II. Input–output organization of single thalamocortical neurons in the ventrolateral thalamus. Neurosci Res 2:157–180

    CAS  PubMed  Google Scholar 

  • Shinoda Y, Ohgaki T, Futami T (1986) The morphology of single lateral vestibulospinal tract axons in the lower cervical spinal cord of the cat. J Comp Neurol 249:226–241

    CAS  PubMed  Google Scholar 

  • Shinoda Y, Sugiuchi Y, Futami T (1987) Excitatory inputs to cerebellar dentate nucleus neurons from the cerebral cortex in the cat. Exp Brain Res 67:299–315

    CAS  PubMed  Google Scholar 

  • Shinoda Y, Sugiuchi Y, Futami T, Izawa R (1992) Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. J Neurophysiol 67:547–560

    CAS  PubMed  Google Scholar 

  • Shinoda Y, Sugiuchi Y, Futami T (1993) Organization of excitatory inputs from the cerebral cortex to the cerebellar dentate nucleus. Can J Neurol Sci 20(Suppl 3):S19–S28

    PubMed  Google Scholar 

  • Shinoda Y, Izawa Y, Sugiuchi Y, Futami T (1997) Functional significance of excitatory projections from the precerebellar nuclei to interpositus and dentate nucleus neurons for mediating motor, premotor and parietal cortical inputs. Prog Brain Res 114:196–207

    Google Scholar 

  • Snow PJ, Rose PK, Brown A (1976) Tracing axons and axon collaterals of spinal neurons using intracellular injection of horseradish peroxidase. Science 191:312–313

    CAS  PubMed  Google Scholar 

  • Snyder RL, Faull RL, Mehler WR (1978) A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, cat and squirrel monkey based on the retrograde transport of horseradish peroxidase. J Comp Neurol 181:833–852

    CAS  PubMed  Google Scholar 

  • Somana R, Walberg F (1980) A re-examination of the cerebellar projections from the gracile, main and external cuneate nuclei in the cat. Brain Res 186:33–42

    CAS  PubMed  Google Scholar 

  • Stretton AW, Kravitz EA (1968) Neuronal geometry: determination with a technique of intracellular dye injection. Science 162:132–134

    CAS  PubMed  Google Scholar 

  • Sugihara I, Shinoda Y (2004) Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci 24:8771–8785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara I, Shinoda Y (2007) Molecular, topographic, and functional organization of the cerebellar nuclei: analysis by three-dimensional mapping of olivocerebellar projection and aldolase C labeling. J Neurosci 27:9696–9710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara I, Lang EJ, Llinás R (1995) Serotonin modulation of inferior olivary oscillations and synchronicity: a multiple electrode study in the rat cerebellum. Eur J Neurosci 7:521–534

    CAS  PubMed  Google Scholar 

  • Sugihara I, Wu H, Shinoda Y (1999) Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol 414:131–148

    CAS  PubMed  Google Scholar 

  • Sugihara I, Wu H, Shinoda Y (2001) The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J Neurosci 21:7715–7723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara I, Fujita H, Na J, Quy PN, Li BY, Ikeda D (2009) Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. J Comp Neurol 512:282–304

    CAS  PubMed  Google Scholar 

  • Szenthágothai J, Rajkovits K (1959) U€ ber den Ursprung der Kletterfasern des Kleinhirns. Z Anat Entwicklungsgesch 121:130–141

    Google Scholar 

  • Teune TM, Burg JV, Moer JV, Voogd J, Ruigrok T (2000) Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res 124:141–172

    CAS  PubMed  Google Scholar 

  • Thach WT (1968) Discharge of Purkinje and cerebellar neurons during rapidly alternating arm movement in the monkey. J Neurophysiol 31:785–797

    CAS  PubMed  Google Scholar 

  • Toyama K, Tsukahara N, Udo M (1968) Nature of the cerebellar influences upon the red nucleus neurons. Exp Brain Res 4:292–309

    CAS  PubMed  Google Scholar 

  • Uno M, Yoshida M, Hirota I (1970) The mode of cerebello-thalamic relay transmission investigated with intracellular recording from cells of the ventrolateral nucleus of cat’s thalamus. Exp Brain Res 10:121–139

    CAS  PubMed  Google Scholar 

  • Voogd J (1964) The cerebellum of the cat. Van Gorcum, Assen

    Google Scholar 

  • Voogd J (1969) The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. American Medical Association, Chicago

    Google Scholar 

  • Voogd J (1995) Cerebellum. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, Sydney

    Google Scholar 

  • Voogd J, Bigaré F (1980) Topographical distribution of olivary and cortico nuclear fibers in the cerebellum: a review. In: Courville J, de Montigny C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology. Raven, New York

    Google Scholar 

  • Voogd J, Ruigrok TJH (2004) The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol 33:5–21

    PubMed  Google Scholar 

  • Voogd J, Hess DT, Marani E (1987) The parasagittal zonation of the cerebellar cortex in cat and monkey: topography, distribution of acetylcholinesterase, and development. In: King JS (ed) New concepts in cerebellar neurobiology. Liss, New York

    Google Scholar 

  • Voogd J, Jaarsma D, Marani E (1996) The cerebellum, chemoarchitecture and anatomy. In: Swanson LW, Björklund A, Hökfelt T (eds) Integrated systems of the CNS, part III. Cerebellum, basal ganglia, olfactory system. Handbook of chemical Neuroanatomy, vol 12. Elsevier, Amsterdam, pp 1–369

    Google Scholar 

  • Voogd J, Pardoe J, Ruigrok TJH, Apps R (2003) The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci 23:4645–4656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welker W (1987) Spatial organization of somatosensory projections to granular cell cerebellar cortex: functional and connectional implications of fractured somatotopy. In: King JS (ed) New concepts in cerebellar neurobiology. Liss, New York

    Google Scholar 

  • Wetts R, Kalaska JF, Smith AM (1985) Cerebellar nuclear cell activity during antagonistic cocontraction and reciprocal inhibition of forearm muscles. J Neurophysiol 54:231–244

    CAS  PubMed  Google Scholar 

  • Wu H, Sugihara I, Shinoda Y (1999) Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol 411:97–118

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (KAKENHI 16 K070025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Shinoda .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shinoda, Y., Sugihara, I. (2020). Axonal Trajectories of Single Climbing and Mossy Fiber Neurons in the Cerebellar Cortex and Nucleus. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_20-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_20-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics