Skip to main content
Log in

On Singularity Formation in a Hele-Shaw Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss a lubrication approximation model of the interface between two immiscible fluids in a Hele-Shaw cell, derived in Constantin et al. (Phys Rev E 47(6):4169–4181, 1993) and widely studied since. The model consists of a single one dimensional evolution equation for the thickness 2h =  2h(x, t) of a thin neck of fluid,

$${\partial_{t} {h} + \partial_{x} (h \partial^{3}_{ x} h) = 0,}$$

for \({x \in (-1, 1)\, {\rm and}\, t \geq 0}\). The boundary conditions fix the neck height and the pressure jump:

$${h(\pm 1, t) = 1, \quad\quad \partial^{2}_{ x} h(\pm 1, t) = P > 0.}$$

We prove that starting from smooth and positive h, as long as h(x, t) >  0, for x ∈ [−1, 1], t ∈ [0, T ], no singularity can arise in the solution up to time T. As a consequence, we prove for any P > 2 and any smooth and positive initial datum that the solution pinches off in either finite or infinite time, i.e., \({{\rm inf}_{[-1,1]\times[0,T*)}h = 0}\), for some \({{T}_{*} \in (0,\infty]}\). These facts have been long anticipated on the basis of numerical and theoretical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren R., Bertozzi A.L., Brenner M.P.: Stable and unstable singularities in the unforced Hele-Shaw cell. Phys. Fluids 8(6), 1356–1370 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bernis F., Friedman A.: Higher order nonlinear degenerate parabolic equations. J. Differ. Equ. 83(1), 179–206 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bernoff A.J., Witelski T.P.: Linear stability of source-type similarity solutions of the thin film equation. Appl. Math. Lett. 15(5), 599–606 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertozzi, A.L., Brenner, M.P., Dupont, T. F., Kadanoff, L.P.: Singularities and similarities in interface flows. In: Trends and Perspectives in Applied Mathematics, pp. 155–208. Springer, New York (1994)

  5. Bertozzi A.L., Pugh M.C.: The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions. Commun. Pure Appl. Math. 49(2), 85–123 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertozzi A.L., Pugh M.C.: Long-wave instabilities and saturation in thin filmequations. Commun. Pure Appl. Math. 51(6), 625–661 (1998)

    Article  Google Scholar 

  7. Bonn D., Eggers J., Indekeu J., Meunier J., Rolley E.: Wetting and spreading. Rev. Mod. Phys. 81(2), 739 (2009)

    Article  ADS  Google Scholar 

  8. Brezis H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  9. Cohen I., Brenner M.P., Eggers J., Nagel S.R.: Two fluid drop snap-off problem: experiments and theory. Phys. Rev. Lett. 83(6), 1147 (1999)

    Article  ADS  Google Scholar 

  10. Constantin P., Dupont T.F., Goldstein R.E., Kadanoff L.P., Shelley M.J., Zhou S.-M.: Droplet breakup in a model of the Hele-Shaw cell. Phys. Rev. E 47(6), 4169–4181 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chaudhary K.C., Maxworthy T.: The nonlinear capillary instability of a liquid jet Part 2. J. Fluid Mech. 96(2), 275–286 (1980)

    Article  ADS  MATH  Google Scholar 

  12. Chaudhary K.C., Redekopp L.G.: The nonlinear capillary instability of a liquid jet Part 1. J. Fluid Mech. 96(2), 257–274 (1980)

    Article  ADS  MATH  Google Scholar 

  13. De Gennes P.-G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57(3), 827 (1985)

    Article  ADS  Google Scholar 

  14. Dupont T.F., Goldstein R.E., Kadanoff L.P., Zhou S.-M.:: Finite-time singularity formation in Hele-Shaw systems. Phys. Rev. E 47(6), 4182 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dusan E.B., Davis S.H.: On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65(1), 71–95 (1974)

    Article  ADS  MATH  Google Scholar 

  16. Eggers J., Dupont T.F.: Drop formation in a one-dimensional approximation of the Navier- Stokes equation. J. Fluid Mech. 262, 205–221 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Eggers J., Fontelos M.A.: The role of self-similarity in singularities of partial differential equations. Nonlinearity 22(1), R1 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gnann, M.V., Ibrahim, S., Masmoudi, N.: Stability of receding traveling waves for a fourth order degenerate parabolic free boundary problem (2017). arXiv:1704.06596

  19. Giacomelli L., Knupfer H., Otto F.: Smooth zero-contact-angle solutions to a thin-film equation around the steady state. J. Differ. Equ. 245(6), 1454–1506 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Giacomelli L., Otto F.: Rigorous lubrication approximation. Interfaces Free Bound. 5(4), 483–529 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldstein R.E., Pesci A.I., Shelley M.J.: Topology transitions and singularities in viscous flows. Phys. Rev. Lett. 70(20), 3043 (1993)

    Article  ADS  Google Scholar 

  22. Greenspan H.P.: On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84(1), 125–143 (1978)

    Article  ADS  MATH  Google Scholar 

  23. Halsey T.C.: Diffusion-limited aggregation: a model for pattern formation. Phys. Today 53(11), 36–41 (2000)

    Article  Google Scholar 

  24. Hocking L.M.: Sliding and spreading of thin two-dimensional drops. Q. J. Mech. Appl. Math. 34(1), 37–55 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krichever I., Mineev-Weinstein M., Wiegmann P., Zabrodin A.: Laplacian growth and Witham equations of soliton theory. Phys. D Nonlinear Phenom. 198(1), 1–28 (2004)

    Article  ADS  MATH  Google Scholar 

  26. Knupfer H., Masmoudi N.: Darcy’s flow with prescribed contact angle: well-posedness and lubrication approximation. Arch. Ration. Mech. Anal. 218(2), 589–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Knupfer H.: Well-posedness for a class of thin-film equations with general mobility in the regime of partial wetting. Arch. Ration. Mech. Anal. 218(2), 1083–1130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions J.L., Magenes E.: Nonhomogeneous boundary value problems and applications Vol 2. Translated from the French by P. Kenneth, vol. 181. Springer, New York (1972)

    Book  MATH  Google Scholar 

  29. Mineev-Weinstein M., Wiegmann P.B., Zabrodin A.: Integrable structure of interface dynamics. Phys. Rev. Lett. 84(22), 5106–5109 (2000)

    Article  ADS  Google Scholar 

  30. Oron A., Davis S.H., Bankoff S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931 (1997)

    Article  ADS  Google Scholar 

  31. Peregrine D.H., Shoker G., Symon A.: The bifurcation of liquid bridges. J. Fluid Mech. 212, 25–39 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  32. Smyth N.F., Hill J.M.: High-order nonlinear diffusion. IMAJ. Appl. Math. 40(2), 73–86 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Saffman, P.G., Taylor, G.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 245, pp. 312–329. The Royal Society (1958)

  34. Vicsek T.: Pattern formation in diffusion-limited aggregation. Phys. Rev. Lett. 53(24), 2281 (1984)

    Article  ADS  Google Scholar 

  35. Witten, T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–3 (1981)

Download references

Acknowledgement

The research of PC is partially funded by NSF grant DMS-1209394. The research if VV is partially funded by NSF grant DMS-1652134 and an Alfred P. Sloan Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Constantin.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantin, P., Elgindi, T., Nguyen, H. et al. On Singularity Formation in a Hele-Shaw Model. Commun. Math. Phys. 363, 139–171 (2018). https://doi.org/10.1007/s00220-018-3241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3241-6

Navigation