Skip to main content
Log in

Chiral Asymmetry and the Spectral Action

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider orthogonal connections with arbitrary torsion on compact Riemannian manifolds. For the induced Dirac operators, twisted Dirac operators and Dirac operators of Chamseddine-Connes type we compute the spectral action. In addition to the Einstein-Hilbert action and the bosonic part of the Standard Model Lagrangian we find the Holst term from Loop Quantum Gravity, a coupling of the Holst term to the scalar curvature and a prediction for the value of the Barbero-Immirzi parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agricola, I.: The Srní lectures on non-integrable geometries with torsion. Arch. Math. (Brno) 42, 5–84, (2006), with an appendix by M. Kassuba

  2. Agricola I., Friedrich T.: On the holonomy of connections with skew-symmetric torsion. Math. Ann. 328(4), 711–748 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baekler P., Hehl F.W.: Beyond Einstein-Cartan gravity: Quadratic torsion and curvature invariants with even and odd parity including all boundary terms. Class. Quant. Grav. 28, 215017 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  4. Baekler P., Hehl F.W., Nester J.M.: Poincaré gauge theory of gravity: Friedman cosmology with even and odd parity modes: Analytic part. Phys. Rev. D (3) 83, 024001 (2011)

    Article  ADS  Google Scholar 

  5. Berger M.: Quelques formules de variation pour une structure riemannienne. Ann. Éc. Norm. Sup. (4) 3, 285–294 (1970)

    MATH  Google Scholar 

  6. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Corrected second printing. Grundlehren der math. Wissenschaften 298, Berlin: Springer-Verlag, 1996

  7. Besse, A.L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, Berlin: Springer-Verlag, 1987

  8. Broda B., Szanecki M.: A relation between the Barbero-Immirzi parameter and the standard model. Phys. Lett. B 690, 87–89 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  9. : Sur les variétés à connexion affine et la théorie de la rélativité généralisée (première partie). Ann. Éc. Norm. Sup. 40, 325–412 (1923)

    MathSciNet  Google Scholar 

  10. Cartan É.: Sur les variétés à connexion affine et la théorie de la rélativité généralisée (première partie, suite). Ann. Éc. Norm. Sup. 41, 1–25 (1924)

    MathSciNet  ADS  Google Scholar 

  11. : Sur les variétés à connexion affine et la théorie de la rélativité généralisée (deuxième partie). Ann. Éc. Norm. Sup. 42, 17–88 (1925)

    MathSciNet  ADS  MATH  Google Scholar 

  12. Chamseddine A., Connes A.: The spectral action principle. Commun. Math. Phys. 186(3), 731–750 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  13. Chamseddine A., Connes A.: Noncommutative geometry as a framework for unification of all fundamental interactions including gravity. Part I. Forts. der Physik 58, 553–600 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Chamseddine A., Connes A., Marcolli M.: Gravity and the standard model with neutrion mixing. Adv. Theor. Phys. 11, 991–1089 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Connes, A.: Noncommutative geometry. San Diego, CA: Academic Press, 1994

  16. Connes, A.: Brisure de symétrie spontanée et géometrie du point de vue spectral. Séminaire Bourbaki, Vol. 1995/96. Astérisque 241, Exp. No. 816, 5, 313–349 (1997)

  17. Connes A.: Gravity coupled with matter and the foundation of noncommutative geometry. Commun. Math. Phys. 183(1), 155–176 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  18. Connes, A., Marcolli, M.: Noncommutative geometry, quantum fields and motives. Providence, RI: Amer. Math. Soc., New Delhi: Hindustan Book Agency, 2008

  19. Friedrich, T., Sulanke, S.: Ein Kriterium für die formale Selbstadjungiertheit des Dirac-Operators. Colloq. Math. 40(2), 239–247 (1978/79)

    Google Scholar 

  20. Gilkey, P.B.: Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. Second edition, Boca Raton, FL: CRC Press, 1995

  21. Göckeler, M., Schücker, T.: Differential Geometry, Gauge Theories, and Gravity. Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press, 1987

  22. Goldthorpe W.H.: Spectral Geometry and SO(4) Gravity in a Riemann-Cartan Spacetime. Nucl. Phys. B 170, 307–328 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  23. Grensing G.: Induced Gravity For Nonzero Torsion. Phys. Lett. 169B, 333–336 (1986)

    MathSciNet  ADS  Google Scholar 

  24. Hanisch F., Pfäffle F., Stephan C.A.: The Spectral Action for Dirac Operators with skew-symmetric Torsion. Commun. Math. Phys. 300(3), 877–888 (2010)

    Article  ADS  MATH  Google Scholar 

  25. Hehl F.W., von der Heyde P., Kerlick G.D., Nester J.N.: General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 48, 393–416 (1976)

    Article  ADS  Google Scholar 

  26. Hehl F.W., McCrea J.D., Mielke E.W., Ne’eman Y.: Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilaton invariance. Phys. Rept. 258, 1–171 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  27. Hojman R., Mukku C., Sayed W.A.: Parity violation in metric torsion theories of gravitation. Phys. Rev. D (3) 22, 1915–1921 (1980)

    Article  ADS  Google Scholar 

  28. Holst S.: Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action. Phys. Rev. D (3) 53, 5966–5969 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  29. Iochum B., Kastler D., Schücker T.: On the universal Chamseddine-Connes action. I. Details of the action computation. J. Math. Phys. 38, 4929–4950 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Iochum B., Levy C., Vassilevich D.: Spectral action for torsion with and without boundaries. Commun. Math. Phys. 310, 367–382 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Kazdan J.L., Warner F.W.: Scalar curvature and conformal deformation of Riemannian structure. J. Differential Geom. 10, 113–134 (1975)

    MathSciNet  MATH  Google Scholar 

  32. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. New York: Interscience Publishers, 1969

  33. Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton, NJ: Princeton University Press, 1989

  34. Lizzi F., Mangano G., Miele G., Sparano G.: Fermion Hilbert space and Fermion doubling in the noncommutative geometry approach to gauge theories. Phys. Rev. D 55, 6358–6366 (1997)

    MathSciNet  ADS  Google Scholar 

  35. Obukhov Yu.N.: Spectral Geometry Of The Riemann-Cartan Space-Time. Nucl. Phys. B 212, 237–254 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  36. Pfäffle, F., Stephan, C.A.: The Holst Action by the Spectral Action Principle. Commun. Math. Phys. 301(1), 261–273 (2011); Erratum-ibid. 313(1), 291–292 (2012)

    Google Scholar 

  37. Pfäffle F., Stephan C.A.: On Gravity, Torsion and the Spectral Action Principle. J. Funct. Anal. 262(4), 1529–1565 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rovelli, C.: Quantum gravity. With a foreword by James Bjorken. Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press, 2004

  39. Sitarz A., Zajac A.: Spectral actions for scalar perturbations of Dirac operators. Lett. Math. Phys. 98, 333–348 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Shapiro I.L.: Physical Aspects of the Space-Time Torsion. Phys. Rept. 357, 113–213 (2002)

    Article  ADS  MATH  Google Scholar 

  41. Thiemann, T.: Modern canonical quantum general relativity. With a foreword by Chris Isham. Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press, 2007

  42. Tricerri, F., Vanhecke, L.: Homogeneous structures on Riemannian manifolds. London Math. Soc., Lecture Notes Series, Vol. 83, Cambridge: Cambridge University Press, 1983

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph A. Stephan.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfäffle, F., Stephan, C.A. Chiral Asymmetry and the Spectral Action. Commun. Math. Phys. 321, 283–310 (2013). https://doi.org/10.1007/s00220-012-1641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1641-6

Keywords

Navigation