Skip to main content
Log in

The Spectral Action for Dirac Operators with Skew-Symmetric Torsion

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive a formula for the gravitational part of the spectral action for Dirac operators on 4-dimensional manifolds with totally anti-symmetric torsion. We find that the torsion becomes dynamical and couples to the traceless part of the Riemann curvature tensor. Finally we deduce the Lagrangian for the Standard Model of particle physics in the presence of torsion from the Chamseddine-Connes Dirac operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Connes A.: Noncommutative Geometry. Academic Press, London-NewYork (1994)

    MATH  Google Scholar 

  2. Connes A.: Noncommutative geometry and reality. J. Math. Phys. 36, 6194 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Connes A.: Gravity coupled with matter and the foundation of noncommutative geometry. Commun. Math. Phys. 155, 109 (1996)

    Google Scholar 

  4. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. http://www.alainconnes.org/docs/bookwebfinal.pdf, 2007

  5. Chamseddine A., Connes A.: The spectral action principle. Commun. Math. Phys. 182, 155 (1996)

    Article  ADS  Google Scholar 

  6. Chamseddine A., Connes A., Marcolli M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991 (2007)

    MATH  MathSciNet  Google Scholar 

  7. Chamseddine A., Connes A.: Why the Standard Model. J. Geom. Phys. 58, 38 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Chamseddine A., Connes A.: Conceptual Explanation for the Algebra in the Noncommutative Approach to the Standard Model. Phys. Rev. Lett. 99, 191601 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  9. Chamseddine A., Connes A.: Scale invariance in the spectral action. J. Math. Phys. 47, 063504 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  10. Chamseddine A., Connes A.: Quantum Gravity Boundary Terms from Spectral Action. Phys. Rev. Lett. 99, 071302 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  11. Agricola I., Friedrich T.: On the holonomy of connections with skew-symmetric torsion. Math. Ann. 328, 711 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chamseddine, A., Connes, A.: Noncommutative Geometry as a Framework for Unification of all Fundamental Interactions including Gravity. Part I. http://arxiv.org/abs/1004.0464v1 [hep-th], 2010

  13. Gilkey P.B.: Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem (second edition). CRC Press, Boca Raton, FL (1995)

    MATH  Google Scholar 

  14. Nest R., Vogt E., Werner W.: Spectral Action and the Connes-Chamseddine Model. In: Scheck, F., Upmeier, H., Werner, W. (eds) Lecture Notes in Physics 596, pp. 109. Springer, Berlin-Heidelberg-NewYork (2002)

    Google Scholar 

  15. Goldthorpe W.H.: Spectral Geometry and SO(4) Gravity in a Riemann-Cartan Spacetime. Nucl. Phys. B170, 307 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  16. Obukhov Yu.N.: Spectral Geometry Of The Riemann-Cartan Space-Time. Nucl. Phys. B212, 237 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  17. Buchbinder I.L., Odintsov S.D., Shapiro I.L.: Nonsingular cosmological model with torsion induced by vacuum quantum effects. Phys. Lett. B162, 92 (1985)

    ADS  Google Scholar 

  18. Grensing G.: Induced Gravity For Nonzero Torsion. Phys. Lett. B169, 333 (1986)

    MathSciNet  ADS  Google Scholar 

  19. Cognola G., Zerbini S.: Seeley-deWitt Coefficents in a Riemann-Cartan Manifold. Phys. Lett. B214, 70 (1988)

    MathSciNet  ADS  Google Scholar 

  20. Salamon, S.: Riemannian geometry and holonomy groups. Pitman Research Notes in Mathematics Series 201; New York: Wiley & Sons, Inc., 1989

  21. Kalau W., Walze M.: Gravity, noncommutative geometry and the Wodzicki residue. J. Geom. Phys. 16, 327 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Ackermann, T., Tolksdorf, J.: The Generalized Lichnerowicz formula and analysis of Dirac operators. http://arxiv.org/abs/hep-th/9503153v1, 1995

  23. Iochum B., Kastler D., Schücker T.: On the universal Chamseddine-Connes action. I. Details of the action computation. J. Math. Phys. 38(10), 4929 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Perez A., Rovelli C.: Physical effects of the Immirzi parameter. Phys. Rev. D73, 044013 (2006)

    MathSciNet  ADS  Google Scholar 

  25. Mercuri S.: Fermions in the Ashtekar-Barbero connection formalism for arbitrary values of the Immirzi parameter. Phys. Rev. D73, 084016 (2006)

    MathSciNet  ADS  Google Scholar 

  26. Alexander, S., Vaid, D.: Gravity induced chiral condensate formation and the cosmological constant. http://arxiv.org/abs/hep-th/0609066v1, 2006;

  27. Alexander, S., Vaid, D.: A Fine tuning free resolution of the cosmological constant problem. http://arxiv.org/abs/hep-th/0702064v2, 2007;

  28. Alexander S., Biswas T.: Cosmological BCS mechanism and the Big Bang Singularity. Phys. Rev. D80, 023501 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph A. Stephan.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanisch, F., Pfäffle, F. & Stephan, C.A. The Spectral Action for Dirac Operators with Skew-Symmetric Torsion. Commun. Math. Phys. 300, 877–888 (2010). https://doi.org/10.1007/s00220-010-1135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1135-3

Keywords

Navigation