Skip to main content
Log in

Use of non-Saccharomyces in single-culture, mixed and sequential fermentation to improve red wine quality

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The use of non-Saccharomyces yeasts can provide advantages in winemaking such as: a reduction of ethanol content, the synthesis of certain metabolites that are important for color stability or a good yield in the production of certain volatile compounds (ethyl lactate, 2,3-butanediol, 2-phenylethyl acetate). The main objective was general evaluation of wines made by non-Saccharomyces yeast under different fermentation trials compared to wines made by Saccharomyces cerevisiae. Single pure fermentations were performed by two strains of S. cerevisiae (used as controls) and two strains of Schizosaccharomyces pombe. The yeasts Lachancea thermotolerans and Torulaspora delbrueckii were tested in sequential fermentations with S. cerevisiae strains. The effect on acidity due to the interaction between L. thermotolerans and S. pombe in a mixed fermentation was studied. Sequential fermentations with L. thermotolerans and S. cerevisiae can reduce the ethanol content and increase the content of glycerol and pyruvic acid; in addition, the use of L. thermotolerans can increase the lactic acid content, while the mixed fermentations of S. pombe and L. thermotolerans may increase the acetaldehyde content and may also reduce the ethanol content. However, these samples require more time to complete the fermentation. Single pure fermentations by S. pombe can increase the amounts of vitisins, acetaldehyde and glycerol and the amounts of acetic acid. The use of L. thermotolerans in a sequential fermentation allowed an increase in fruitiness and body character of red wine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beckner Whitener ME, Carlin S, Jacobson D, Weighill D, Divol B, Conterno L, Du Toit M, Vrhovsek U (2015) Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: a targeted approach. LWT-Food Sci Technol 64:412–422

    Article  CAS  Google Scholar 

  2. Contreras A, Hidalgo C, Schmidt S, Henschke PA, Curtin C, Varela C (2015) The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content. Int J Food Microbiol 205:7–15

    Article  CAS  Google Scholar 

  3. Rossouw D, Bauer FF (2016) Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity. Food Microbiol 55:32–46

    Article  CAS  Google Scholar 

  4. Gobbi M, Comitini F, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2013) Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Food Microbiol 33:271–281

    Article  CAS  Google Scholar 

  5. Morata A, Benito S, Loira I, Palomero F, González MC, Suárez-Lepe JA (2012) Formation of pyranoanthocyanins by Schizosaccharomyces pombe during the fermentation of red must. Int J Food Microbiol 159:47–53

    Article  CAS  Google Scholar 

  6. Ciani M, Picciotti G (1995) The growth kinetics and fermentation behaviour of some non-Saccharomyces yeasts associated with wine-making. Biotechnol Lett 17:1247–1250

    Article  CAS  Google Scholar 

  7. Martinez J, Toledano F, Milla C, Ortega J (1990) Development of alcoholic fermentation in non-sterile musts from ‘Pedro Ximenez’ grapes inoculated with pure cultures of selected yeasts. Food Microbiol 7:217–225

    Article  CAS  Google Scholar 

  8. Mauricio J, Guijo S, Ortega J (1991) Relationship between phospholipid and sterol contents in Saccharomyces cerevisiae and Torulaspora delbrueckii and their fermentation activity in grape musts. Am J Enol Vitic 42:301–308

    CAS  Google Scholar 

  9. Moreno JJ, Millán C, Ortega JM, Medina M (1991) Analytical differentiation of wine fermentations using pure and mixed yeast cultures. J Ind Microbiol 7:181–189

    Article  CAS  Google Scholar 

  10. Loira I, Vejarano R, Bañuelos MA, Morata A, Tesfaye W, Uthurry C, Villa A, Cintora I, Suárez-Lepe JA (2014) Influence of sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on wine quality. LWT-Food Sci Technol 59:915–922

    Article  CAS  Google Scholar 

  11. Ciani M, Maccarelli F (1997) Oenological properties of non-Saccharomyces yeasts associated with wine-making. World J Microbiol Biotechnol 14:199–203

    Article  Google Scholar 

  12. Benito A, Calderón F, Palomero F, Benito S (2016) Quality and composition of Airen wines fermented by sequential inoculation of Lachancea thermotolerans and Saccharomyces cerevisiae. Food Technol Biotechnol 54:1–7

    Article  Google Scholar 

  13. Benito Á, Calderón F, Palomero F, Benito S (2015) Combine use of selected Schizosaccharomyces pombe and Lachancea thermotolerans yeast strains as an alternative to the traditional malolactic fermentation in red wine production. Molecules 20:9510–9523

    Article  CAS  Google Scholar 

  14. Benito S, Palomero F, Calderón F, Palmero D, Suárez-Lepe JA (2014) Selection of appropriate Schizosaccharomyces strains for winemaking. Food Microbiol 42:218–224

    Article  CAS  Google Scholar 

  15. Kulkarni P, Loira I, Morata A, Tesfaye W, González MC, Suárez-Lepe JA (2015) Use of non-Saccharomyces yeast strains coupled with ultrasound treatment as a novel technique to accelerate aging on lees of red wines and its repercussion in sensorial parameters. LWT-Food Sci Technol 64:1255–1262

    Article  CAS  Google Scholar 

  16. Mylona A, Del Fresno J, Palomero F, Loira I, Bañuelos M, Morata A, Calderón F, Benito S, Suárez-Lepe J (2016) Use of Schizosaccharomyces strains for wine fermentation—effect on the wine composition and food safety. Int J Food Microbiol 232:63–72

    Article  CAS  Google Scholar 

  17. Loira I, Morata A, Comuzzo P, Callejo MJ, González C, Calderón F, Suárez-Lepe JA (2015) Use of Schizosaccharomyces pombe and Torulaspora delbrueckii strains in mixed and sequential fermentations to improve red wine sensory quality. Food Res Int. 76(Part 3):325–333

    Article  CAS  Google Scholar 

  18. Glories Y (1984) La couleur des vins rouges. Connaiss Vigne Vin 18:195–217

    CAS  Google Scholar 

  19. Bañuelos MA, Loira I, Escott C, Del Fresno JM, Morata A, Sanz PD, Otero L, Suárez-Lepe JA (2016) Grape processing by high hydrostatic pressure: effect on use of non-Saccharomyces in must fermentation. Food Bioprocess Technol 10:1769–1778

    Article  Google Scholar 

  20. Benito S, Palomero F, Morata A, Calderón F, Suárez-Lepe JA (2012) New applications for Schizosaccharomyces pombe in the alcoholic fermentation of red wines. Int J Food Sci Technol 47:2101–2108

    Article  CAS  Google Scholar 

  21. Fleet GH, Heard GM (2002) In: Fleet GH (ed) Wine microbiology and biotechnology, vol 2. Taylor & Francis Inc, New York

    Google Scholar 

  22. Gao C, Fleet GH (1995) Degradation of malic and tartaric acids by high-density cell suspensions of wine yeasts. Food Microbiol 12:65–71

    Article  CAS  Google Scholar 

  23. Thornton R, Rodriguez S (1996) Deacidification of red and white wines by a mutant of Schizosaccharomyces malidevoransunder commercial winemaking conditions. Food Microbiol 13:475–482

    Article  CAS  Google Scholar 

  24. Dharmadhikari MR, Wilker K (1998) Deacidification of high malate must with Schizosaccharomyces pombe. Am J Enol Vitic 49:408–412

    CAS  Google Scholar 

  25. Fleet G (2000) In: Robinson RK, Batt CA, Patel ED (eds) Encyclopedia of food microbiology, vol 3. Academic Press, London

    Google Scholar 

  26. Morata A (2004) Influencia de la maduración antociánica de la uva y de la biotecnología fermentativa en color, aroma y estructura de los vinos tintos. Universidad Politécnica de Madrid, Madrid

    Google Scholar 

  27. Flanzy C (2000) Enología: Fundamentos científicos y tecnológicos. Mundi Prensa Libros SA, Madrid

    Google Scholar 

  28. Cheynier V, Teissendre P, Cabanis J, Cabanis M (2000) Enología: Fundamentos científicos y tecnológicos. Mundi Prensa Libros SA, Madrid

    Google Scholar 

  29. Costantini A, García-Moruno E, Moreno-Arribas MV (2009) In: Moreno-Arribas MV, Polo MC (eds) Wine chemistry and biochemistry. Springer, New York

    Google Scholar 

  30. Morata A, González C, Suárez-Lepe JA (2007) Formation of vinylphenolic pyranoanthocyanins by selected yeasts fermenting red grape musts supplemented with hydroxycinnamic acids. Int J Food Microbiol 116:144–152

    Article  CAS  Google Scholar 

  31. Lachenmeier DW, Sohnius E (2008) The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: evidence from a large chemical survey. Food Chem Toxicol 46:2903–2911

    Article  CAS  Google Scholar 

  32. Sánchez-Palomo E, García-Carpintero EG, Gallego MÁG, Viñas MÁG (2012) In: Salih B, Çelikbıçak (ed) Gas chromatography in plant science, wine technology, toxicology and some specific applications, In Tech, Rijeka

  33. Liu S, Pilone GJ (2000) An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int J Food Sci Technol 35:49–61

    Article  CAS  Google Scholar 

  34. Peinado RA, Moreno J, Bueno JE, Moreno JA, Mauricio JC (2004) Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem 84:585–590

    Article  CAS  Google Scholar 

  35. Tao Y, Zhang L (2010) Intensity prediction of typical aroma characters of cabernet sauvignon wine in Changli County. LWT-Food Sci Technol 43:1550–1556

    Article  CAS  Google Scholar 

  36. Lambrechts M, Pretorius I (2000) Yeast and its importance to wine aroma-a review. S Afr J Enol Vitic 21:97–129

    CAS  Google Scholar 

  37. Tao Y, Li H (2009) Active volatiles of cabernet sauvignon wine from Changli County. Health 1:176

    Article  Google Scholar 

  38. Lerm E, Engelbrecht L, Du Toit M (2010) Malolactic fermentation: the ABC’s of MLF. S Afr J Enol Vitic 31:186–212

    CAS  Google Scholar 

  39. Lloret A, Boido E, Lorenzo D, Medina K, Carrau E, Dellacassa E, Versini G (2002) Aroma variation in tannat wines: effect of malolactic fermentation on ethyl lactate level and its enantiomeric distribution. Ital J Food Sci 14:175–180

    CAS  Google Scholar 

  40. Bartowsky EJ, Francis IL, Bellon JR, Henschke PA (2002) Is buttery aroma perception in wines predictable from the diacetyl concentration? Aust J Grape Wine Res 8:180–185

    Article  CAS  Google Scholar 

  41. Dubois P (1994) Les arômes des vins et leurs défauts. Revue française d’oenologie 34:27–41

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministerio de Economía y Competitividad (AGL2013-40503-R). The authors thank J. A. Sánchez (Dpto. Química y Tecnología de Alimentos) for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Loira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Fresno, J.M., Morata, A., Loira, I. et al. Use of non-Saccharomyces in single-culture, mixed and sequential fermentation to improve red wine quality. Eur Food Res Technol 243, 2175–2185 (2017). https://doi.org/10.1007/s00217-017-2920-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-2920-4

Keywords

Navigation