Skip to main content
Log in

Identification, typing and functional characterization of dominant lactic acid bacteria strains from Iranian traditional yoghurt

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Interest in the microbiota of traditional fermented dairy products, such as yoghurt, continues due to the need for new lactic acid bacteria (LAB) strains that can complement or replace currently-in-use starters. In this work, five traditional yoghurts and one milk sample (for making yoghurt) from different areas of the Khorasan-e-Razavi region, Iran, were subjected to microbial characterization. Among the 102 isolates recovered, which included 29 from milk, the thermophilic LAB species Streptococcus thermophilus (34) and Lactobacillus delbrueckii (36) (with similar numbers of the subsp. bulgaricus and lactis) were the majority bacteria in all samples. Wide intra-species phenotypic and genetic diversity was encountered among the isolates. The safety and technological features of 29 strains belonging to the species S. thermophilus, L. delbrueckii and Lactobacillus helveticus, all candidates for use in yoghurt-making, were examined. In culture, two S. thermophilus strains produced the biogenic amine histamine from histidine (its precursor amino acid), and five L. delbrueckii strains showed atypical resistance to tetracycline (MIC ≥ 8 μg mL−1). The remaining strains coagulated milk, producing a coagulum of good appearance and pleasant acidic aroma. None of them produced appreciable amounts of exopolysaccharides in milk under the incubation conditions. After fermentation of milk with individual and mixed strains, major yoghurt aroma volatile compounds (i.e. acetaldehyde, diacetyl and acetic acid) were detected. Also as being used in the design of commercial starters, the thermophilic LAB strains characterized in this study might be used to help improve the safety of traditional yoghurts, while maintaining their original qualitative and sensorial characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Azadnia P, Ghasemi MSA, Mohaghegh MD, Jashni MK, Zamani MH, Babaki AK, Taarof N (2011) Isolation and identification of lactococci from traditional yoghurt in tribes of Kazerun. J Anim Vet Adv 10:698–700

    Article  Google Scholar 

  2. Calles-Enríquez M, Eriksen BH, Andersen PS, Rattray FP, Johansen AH, Fernández M, Ladero V, Álvarez MA (2010) Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression. Appl Environ Microbiol 76:6231–6238

    Article  Google Scholar 

  3. Cheng H (2010) Volatile flavour compounds in yogurt: a review. Crit Rev Food Sci Nutr 50:938–950

    Article  CAS  Google Scholar 

  4. Delorme C, Bartholini C, Bolotin A, Ehrlich SD, Renault P (2010) Emergence of a cell wall protease in the Streptococcus thermophilus population. Appl Environ Microbiol 76:451–460

    Article  CAS  Google Scholar 

  5. Dierksen KP, Sandine WE, Trempy JE (1997) Expression of ropy and mucoid phenotypes in Lactococcus lactis. J Dairy Sci 80:1528–1536

    Article  CAS  Google Scholar 

  6. EFSA (European Food Safety Authority) (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740

    Google Scholar 

  7. El-Baradei G, Delacroix-Buchet A, Ogier JC (2008) Bacterial biodiversity of traditional Zabady fermented milk. Int J Food Microbiol 121:295–301

    Article  CAS  Google Scholar 

  8. Erkus O, Okuklu B, Yenidunya AF, Harsa S (2014) High genetic and phenotypic variability of Streptococcus thermophilus strains isolated from artisanal Yuruk yoghurts. LWT-Food Sci Technol 58:348–354

    Article  CAS  Google Scholar 

  9. FAO/WHO (2011) Codex Alimentarius. Milk and milk products, 2nd edn. Food and Agriculture Organization of the United Nations/World Health Organization, Rome

    Google Scholar 

  10. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470

    Article  CAS  Google Scholar 

  11. Fernández E, Alegría A, Delgado S, Martín MC, Mayo B (2011) Comparative phenotypic and molecular genetic profiling of wild Lactococcus lactis subsp. lactis strains of the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes, isolated from starter-free cheeses made of raw milk. Appl Environ Microbiol 77:5324–5335

    Article  Google Scholar 

  12. Gatti M, Trivisano C, Fabrizi E, Neviani E, Gardini F (2004) Biodiversity among Lactobacillus helveticus strains isolated from different natural whey starter cultures as revealed by classification trees. Appl Environ Microbiol 70:182–190

    Article  CAS  Google Scholar 

  13. Gemelas L, Rigobello V, Ly-Chatain MH, Demarigny Y (2013) Selective Lactococcus enumeration in raw milk. Food Nutr Sci 4:49–58

    Article  CAS  Google Scholar 

  14. Germond JE, Lapierre L, Delley M, Mollet B, Felis GE, Dellaglio F (2003) Evolution of the bacterial species Lactobacillus delbrueckii: a partial genomic study with reflections on prokaryotic species concept. Mol Biol Evol 20:93–104

    Article  CAS  Google Scholar 

  15. Giraffa G, Andrighetto C, Antonello C, Gatti M, Lazzi C, Marcazzan G, Lombardi A, Neviani E (2004) Genotypic and phenotypic diversity of Lactobacillus delbrueckii subsp. lactis strains of dairy origin. Int J Food Microbiol 91:129–139

    Article  CAS  Google Scholar 

  16. Giraffa G, Paris A, Valcavi L, Gatti M, Neviani E (2001) Genotypic and phenotypic heterogeneity of Streptococcus thermophilus strains isolated from dairy products. J Appl Microbiol 91:937–943

    Article  CAS  Google Scholar 

  17. Hébert EM, Raya RR, Tailliez P, de Giori GS (2000) Characterization of natural isolates of Lactobacillus strains to be used as starter cultures in dairy fermentation. Int J Food Microbiol 59:19–27

    Article  Google Scholar 

  18. Hettinga KA, van Valenberg HJF, Lam TJGM, van Hooijdonk ACM (2008) Detection of mastitis pathogens by analysis of volatile bacterial metabolites. J Dairy Sci 91:3834–3839

    Article  CAS  Google Scholar 

  19. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (eds) (1994) Bergey’s manual of determinative bacteriology, 9th edn. The Williams & Wilkins Co, Baltimore

    Google Scholar 

  20. Huys G, DʼHaene K, Cnockaert M, Tosi L, Danielsen M, Flórez AB, Mättö J, Axelsson L, Korhonen J, Mayrhofer S, Egervärn M, Giacomini M, Vandamme P (2010) Intra- and interlaboratory performances of two commercial antimicrobial susceptibility testing methods for bifidobacteria and nonenterococcal lactic acid bacteria. Antimicrob Agents Chemother 54:2567–2574

    Article  CAS  Google Scholar 

  21. Iranmanesh M, Ezzatpanah H, Mojgani N, Karimi Torshizi MA, Aminafshar M, Mohamadi M (2012) Isolation of lactic acid bacteria from ewe milk, traditional yoghurt and sour buttermilk in Iran. Eur J Food Res Rev 2:79–92

    Google Scholar 

  22. Irigoyen A, Ortigosa M, García S, Ibáñez FC, Torre P (2012) Comparison of free amino acid and volatile components in three fermented milks. Int J Dairy Technol 65:578–584

    Article  Google Scholar 

  23. ISIRI 2852 (2006) Milk and milk products—determination of titratable acidity and pH value—test method. Institute of Standards and Industrial Research of Iran, Tehran

    Google Scholar 

  24. ISIRI 695 (2008) Yoghurt—specifications and test methods. Institute of Standards and Industrial Research of Iran, Tehran

    Google Scholar 

  25. ISO 13580 (2005) Yogurt—determination of total solids content (Reference method)

  26. ISO 5541 (1999) Milk and milk products—enumeration of coliforms—part 2: most probable number technique at 30°C

  27. ISO 6611 (2004) Milk and milk products—enumeration of colony—forming units of yeasts and/or moulds—colony-count technique at 25°C

  28. ISO 6888-3 (2003) Microbiology of food and animal feeding stuffs—horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) part 3: detection and MPN technique for low numbers

  29. ISO 707 (2008) Milk and milk products—guidance on sampling

  30. ISO 7251 (2005) Microbiology of food and animal feeding stuffs. Detection and enumeration of presumptive Escherichia coli. Most probable number technique

  31. ISO 7889 (2003) Enumeration of characteristic microorganisms—colony count technique at 37°C

  32. Jensen MP, Ardo Y, Vogensen FK (2009) Isolation of cultivable thermophilic LAB from cheeses made with mesophilic starter and molecular comparison with dairy-related Lactobacillus helveticus strains. Lett Appl Microbiol 49:396–402

    Article  CAS  Google Scholar 

  33. Johansson M-L, Sanni A, Lonner C, Molin G (1995) Phenotypically based taxonomy using API 50CH of lactobacilli from Nigerian ogi, and the occurrence of starch fermenting strains. Int J Food Microbiol 25:159–168

    Article  CAS  Google Scholar 

  34. Klare I, Konstabel C, Muller-Bertling S, Reissbrodt R, Huys G, Vancanneyt M, Swings J, Goossens H, Witte W (2005) Evaluation of new broth media for microdilution antibiotic susceptibility testing of lactobacilli, pediococci, lactococci, and bifidobacteria. Appl Environ Microbiol 71:8982–8986

    Article  CAS  Google Scholar 

  35. Koeuth T, Versalovic J, Lupski JR (1995) Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 5:08–418

    Article  Google Scholar 

  36. Ladero V, Fernández M, Calles-Enríquez M, Sanchez-Llana E, Canedo E, Martín MC, Álvarez MA (2012) Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol 30:132–138

    Article  CAS  Google Scholar 

  37. Mahony J, Ainsworth S, Stockdale S, van Sinderen D (2012) Phages of lactic acid bacteria: the role of genetics in understanding phage-host interactions and their co-evolutionary processes. Virology 434:143–150

    Article  CAS  Google Scholar 

  38. Martín MC, Fernández M, Linares DM, Álvarez MA (2005) Sequencing, characterization and transcriptional analysis of the histidine decarboxylase operon of Lactobacillus buchneri. Microbiology 151:1219–1228

    Article  Google Scholar 

  39. Mills S, O’Sullivan O, Hill C, Fitzgerald GF, Ross RP (2010) The changing face of dairy starter cultures research. From genomics to economics. Int J Dairy Technol 63:149–170

    Article  Google Scholar 

  40. Mora D, Fortina MG, Parini C, Ricci G, Gatti M, Giraffa G, Manachini PL (2002) Genetic diversity and technological properties of Streptococcus thermophilus strains isolated from dairy products. J Appl Microbiol 93:278–287

    Article  CAS  Google Scholar 

  41. Parente E, Cogan TM (2004) Starter cultures: general aspects. In: Fox PF, McSweeney PJH, Cogan TM, Guninee TP (eds) Cheese: chemistry, physics and microbiology. General aspects, vol 1, 3rd edn. Elsevier, Amsterdam, pp 123–147

    Chapter  Google Scholar 

  42. Pourahmad R, Mazaheri Assadi M (2005) Yoghurt production by Iranian native starter cultures. Nutr Food Sci. 35:410–415

    Article  Google Scholar 

  43. Rasmussen TB, Danielsen M, Valina O, Garrigues C, Johansen E, Pedersen MB (2008) Streptococcus thermophilus core genome: comparative genome hybridization study of 47 strains. Appl Environ Microbiol 74:4703–4710

    Article  CAS  Google Scholar 

  44. Redruello B, Ladero V, Cuesta I, Álvarez-Buylla JR, Martín MC, Fernández M, Álvarez MA (2013) A fast, reliable, ultra high performance liquid chromatography method for the simultaneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethylenemalonate as a derivatising agent. Food Chem 139:1029–1035

    Article  CAS  Google Scholar 

  45. Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203

    Article  CAS  Google Scholar 

  46. Romano A, Trip H, Campbell-Sills H, Bouchez O, Sherman D, Lolkema JS, Lucas PM (2013) Genome sequence of Lactobacillus saerimneri 30a (Formerly Lactobacillus sp. Strain 30a), a reference lactic acid bacterium strain producing biogenic amines. Genome Announc 1:e00097-12

    Article  Google Scholar 

  47. Rossetti L, Giraffa G (2005) Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. Int Dairy J 63:135–144

    CAS  Google Scholar 

  48. Rossetti L, Fornassi ME, Gatti M, Lazzi C, Neviani E, Giraffa G (2008) Grana Padano cheese whey starters: microbial composition and strain distribution. Int J Food Microbiol 127:168–171

    Article  CAS  Google Scholar 

  49. Schillinger U, Holzapfel WH (2003) Culture media for lactic acid bacteria. In: Corry JEL, Curtis GDW, Baird RM (eds) Handbook of culture media for food microbiology. Elsevier, Amsterdam, pp 128–130

    Google Scholar 

  50. Settachaimongkon S, Nout MJ, Antunes Fernandes EC, Hettinga KA, Vervoort JM, van Hooijdonk TC, Zwietering MH, Smid EJ, van Valenberg HJ (2014) Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int J Food Microbiol 177:29–36

    Article  Google Scholar 

  51. Sun Z, Liu W, Song Y, Xu H, Yu J, Bilige M, Zhang H, Chen Y (2015) Population structure of Lactobacillus helveticus isolates from naturally fermented dairy products based on multilocus sequence typing. J Dairy Sci 98:2962–2972

    Article  CAS  Google Scholar 

  52. Tabasco R, Paarup T, Janer C, Peláez C, Requena T (2007) Selective enumeration and identification of mixed cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei and Bifidobacterium lactis in fermented milk. Int Dairy J 17:1107–1114

    Article  CAS  Google Scholar 

  53. Tafvizi F, Tajabadi Ebrahimi M (2012) Detection of genetic diversity and classification of Lactobacillus species isolated from Iranian traditional dairy products by RAPD fingerprinting and POPGENE analysis. Ann Biol Res 3:4904–4911

    CAS  Google Scholar 

  54. Tamang JP (2009) Himalayan fermented foods: microbiology, nutrition and ethnic values. CRC Press, New York

    Book  Google Scholar 

  55. Tamime AY, Robinson RK (2007) Yoghurt: science and technology, 3rd edn. Woodhead Publishing, Cambridge

    Google Scholar 

  56. Von Graevenitz A (2004) Rothia dentocariosa: taxonomy and differential diagnosis. Clin Microbiol Infect 10:399–402

    Article  Google Scholar 

  57. Wouters JTM, Ayad EHE, Hugenholtz J, Smit S (2002) Microbes from raw milk for fermented dairy products. Int Dairy J 12:91–109

    Article  CAS  Google Scholar 

  58. Xanthopoulos V, Petridis D, Tzanetakis N (2001) Characterization and classification of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus strains isolated from traditional Greek yoghurts. J Food Sci 66:747–752

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially funded by projects from INIA (Ref. RM2011-00005-00-00) and MINECO (Ref. AGL2014-57820-R), and. A.B. Flórez was supported by a research contract under JAE-Doc Program (CSIC) with funding from the European Social Funds. The authors would also like to thank the Iran National Science Foundation (INSF) for financial support (Project No. 91059662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baltasar Mayo.

Ethics declarations

Conflict of interest

The authors declare they do not have any conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human and animals subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajimohammadi Farimani, R., Habibi Najafi, M.B., Fazly Bazzaz, B.S. et al. Identification, typing and functional characterization of dominant lactic acid bacteria strains from Iranian traditional yoghurt. Eur Food Res Technol 242, 517–526 (2016). https://doi.org/10.1007/s00217-015-2562-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2562-3

Keywords

Navigation