Skip to main content
Log in

Synergistic and antagonistic effects between alpha-tocopherol and phenolic acids in liposome system: spectroscopic study

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The physicochemical interactions between alpha-tocopherol and three phenolic acids, which constitute main phenolics in coffee brew: caffeic, chlorogenic and ferulic acid, in l-α-phosphatidylcholine liposome system were studied. Steady-state and fluorescence lifetime measurements were applied to elucidate location of investigated phenolic acids in liposomes, and the results have shown that ferulic acid is most embedded into membrane structure. Lipophilic studies have shown that at pH 7.4 the partition coefficients for all phenolic acids are similar. Antioxidant capacity measurements of studied antioxidants were taken using fluorescent probe BODIPY. The synergistic effect was observed in all tested antioxidant systems with the exception of sample consisting of chlorogenic acid (2.5 μM) and alpha-tocopherol (2.5 μM), where antagonistic effect was noted. Concentration of antioxidants was a significant factor in the observed phenomenon. The most effective antioxidant system against oxidation in liposomes was combination of alpha-tocopherol and ferulic acid. This phenomenon could be explained by interaction of ferulic acid with the interior of the phospholipids membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-Azobis(2-amidinopropane) dihydrochloride

α-T:

Alpha-tocopherol

C11-BODIPY581/591:

4,4-Difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid

CA:

Caffeic acid

CGA:

Chlorogenic acid

C OB :

Partition coefficient

DPH:

1,6-Diphenyl-1,3,5-hexatriene

FA:

Ferulic acid

PCF:

Protection coefficient

PC:

l-α-Phosphatidylcholine

References

  1. Laguerre M, Lecomte J, Villeneuve P (2007) Review evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges. Prog Lipid Res 46:244–282

    Article  CAS  Google Scholar 

  2. Nogala-Kałucka M, Dwiecki K, Siger A, Górnaś P, Polewski K, Ciosek S (2013) Antioxidant synergism and antagonism between tocotrienols, quercetin and rutin in model system. Acta Alim 42:360–370

    Article  Google Scholar 

  3. Altunkaya A, Becker EM, Gökmen V, Skibsted LH (2009) Antioxidant activity of lettuce extract (Lactuca sativa) and synergism with added phenolic antioxidants. Food Chem 115:163–168

    Article  CAS  Google Scholar 

  4. Calvo P, Lozano M, Espinosa-Mansilla A, González-Gómeza D (2012) In-vitro evaluation of the availability of ϖ-3 and ϖ-6 fatty acids and tocopherols from microencapsulated walnut oil. Food Res Int 48:316–321

    Article  CAS  Google Scholar 

  5. Marsanasco M, Márquez AL, Wagner JR, Alonso SV, Chiaramoni NS (2011) Liposomes as vehicles for vitamins E and C: an alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res Int 44:3039–3046

    Article  CAS  Google Scholar 

  6. Stone WL, Smith M (2004) Therapeutic uses of antioxidant liposomes. Mol Biotechnol 27:217–230

    Article  CAS  Google Scholar 

  7. Schnitzer E, Pinchuk I, Lichtenberg D (2007) Peroxidation of liposomal lipids. Eur Biophys J 36:499–515

    Article  CAS  Google Scholar 

  8. Shi J, Kakuda Y, Yeung D (2004) Antioxidative properties of lycopene and other carotenoids from tomatoes: synergistic effects. BioFactors 21:203–210

    Article  CAS  Google Scholar 

  9. Gabrielska J, Soczyńska-Kordala M, Przestalski S (2004) Quercetin reduces prooxidant action of organometallic compounds on liposome membranes irradiated with UV. Pol J Environ Stud 13:509–514

    CAS  Google Scholar 

  10. Castelluccio C, Paganga G, Melikian N, Bolwell GP, Pridham J, Sampson J, Rice-Evans C (1995) Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett 368:188–192

    Article  CAS  Google Scholar 

  11. Nardini M, Cirillo E, Natella F, Scaccini C (2002) Absorption of phenolic acids in humans after coffee consumption. J Agric Food Chem 50:5735–5741

    Article  CAS  Google Scholar 

  12. Farah A, Monteiro M, Donangelo CM, Lafay S (2008) Chlorogenic acids from green coffee extract are highly bioavailable in humans. J Nutr 138:2309–2315

    Article  CAS  Google Scholar 

  13. Górnaś P, Siger A, Polewski K, Pugajeva I, Waśkiewicz A (2014) Factors affecting tocopherol contents in coffee brews: NP-HPLC/FLD, RP-UPLC-ESI/MSn and spectroscopic study. Eur Food Res Technol 238:259–264

    Article  Google Scholar 

  14. Górnaś P, Siger A, Pugajeva I, Czubinski J, Waśkiewicz A, Polewski K (2014) New insights regarding tocopherols in Arabica and Robusta species coffee beans: RP-UPLC-ESI/MSn and NP-HPLC/FLD study. J Food Compos Anal 36:117–123

    Article  Google Scholar 

  15. Dwiecki K, Neunert G, Polewski P, Polewski K (2009) Antioxidant activity of daidzein, a natural antioxidant, and its spectroscopic properties in organic solvents and phosphatidylcholine liposomes. J Photochem Photobiol B 96:242–248

    Article  CAS  Google Scholar 

  16. Hendrich AB, Malon R, Pola A, Shirataki Y, Motohashi N, Michalak K (2002) Differential interaction of Sophora isoflavonoids with lipid bilayers. Eur J Pharm Sci 16:201–208

    Article  CAS  Google Scholar 

  17. Wang S, Meckling KA, Marcone MF, Kakuda Y, Tsao R (2011) Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J Agric Food Chem 59:960–968

    Article  CAS  Google Scholar 

  18. Dwiecki K, Górnaś P, Wilk A, Nogala-Kałucka M, Polewski K (2007) Spectroscopic studies of D-α-tocopherol concentration-induced transformation in egg phosphatidylcholine vesicles. Cell Mol Biol Lett 12:51–69

    Article  CAS  Google Scholar 

  19. Neunert G, Polewski P, Markiewicz M, Walejko P, Witkowski S, Polewski K (2010) Partition of tocopheryl glucopyranoside into liposome membranes studied by fluorescence methods. Biophys Chem 146:92–97

    Article  CAS  Google Scholar 

  20. Samori B, Lenaz G, Battino M, Marconi G, Domini I (1992) On coenzyme Q orientation in membranes: a linear dichroism study of ubiquinones in a model bilayer. J Membr Biol 128:193–203

    Article  CAS  Google Scholar 

  21. Heide UV, Ginkel G, Levine YK (1996) DPH is localized in two distinct populations in lipid vesicles. Chem Phys Lett 253:118–122

    Article  Google Scholar 

  22. Konopasek I, Vecer J, Strzalka K, Amler E (2004) Short-lived fluorescence component of DPH reports on lipid–water interface of biological membranes. Chem Phys Lipids 130:135–144

    Article  CAS  Google Scholar 

  23. Konopasek I, Kvasnicka P, Amler E, Kotyk A, Curatola G (1995) The transmembrane gradient of the dielectric constant influences the DPH lifetime distribution. FEBS Lett 374:338–340

    Article  CAS  Google Scholar 

  24. Dwiecki K, Górnaś P, Jackowiak H, Nogala-Kałucka M, Polewski K (2007) The effect of D-alpha-tocopherol on the solubilization of dipalmitoylphosphatidylcholine membrane by anionic detergent sodium dodecyl sulfate. J Food Lipids 14:50–61

    Article  CAS  Google Scholar 

  25. Sangster J (1997) Octanol-water partition coefficients: fundamentals and physical chemistry. Wiley, New York

    Google Scholar 

  26. Liao K, Yin M (2000) Individual and combined antioxidant effects of seven phenolic agents in human erythrocyte membrane ghosts and phosphatidylcholine liposome systems: importance of the partition coefficient. J Agric Food Chem 48:2266–2270

    Article  CAS  Google Scholar 

  27. Garcia-Cones MT, Wilson PD, Plumb GW, Ralph J, Williamson G (1999) Antioxidant properties of 4,4′-dihydroxy-3,3′-dimethoxy-b,b′-bicinnamic acid (8-8-diferulic acid, non-cyclic form). J Sci Food Agric 79:379–384

    Article  Google Scholar 

  28. Górnaś P, Neunert G, Baczyński K, Polewski K (2009) Beta-cyclodextrin complexes with chlorogenic and caffeic acids from coffee brew: spectroscopic, thermodynamic and molecular modelling study. Food Chem 114:190–196

    Article  Google Scholar 

  29. Hait-Darshan R, Grossman S, Bergman M, Deutsch M, Zurgil N (2009) Synergistic activity between a spinach-derived natural antioxidant (NAO) and commercial antioxidants in a variety of oxidation systems. Food Res Int 42:246–253

    Article  CAS  Google Scholar 

  30. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  Google Scholar 

  31. Noguchi N, Takahashi M, Tsuchiya J, Yamashita H, Komuro E, Niki E (1998) Action of 21-aminosteroid U74006F as an antioxidant against lipid peroxidation. Biochem Pharmacol 55:785–791

    Article  CAS  Google Scholar 

  32. Liégeois C, Lermusieau G, Collin S (2000) Measuring antioxidant efficiency of wort, malt, and hops against the 2,2′-azobis(2-amidinopropane) dihydrochloride-induced oxidation of an aqueous dispersion of linoleic acid. J Agric Food Chem 48:1129–1134

    Article  Google Scholar 

  33. Drummen GPC, van Liebergen LCM, Op den Kamp JAF, Post JA (2002) C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med 33:473–490

    Article  CAS  Google Scholar 

  34. Heinonen M, Rein D, Satué-Gracia MT, Huang SW, German JB, Frankel EN (1998) Effect of protein on the antioxidant activity of phenolic compounds in a lecithin-liposome oxidation system. J Agric Food Chem 46:917–922

    Article  CAS  Google Scholar 

  35. Corning PA (1998) The synergism hypothesis: on the concept of synergy and its role in the evolution of complex systems. J Soc Evol Syst 21:133–172

    Article  Google Scholar 

  36. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  CAS  Google Scholar 

  37. Becker EM, Nissen NL, Skibsted LH (2004) Antioxidant evaluation protocols: food quality and health effects. Eur Food Res Technol 219:561–571

    Article  CAS  Google Scholar 

  38. Niki E (1987) Interaction of ascorbate and alpha-tocopherol. Ann N Y Acad Sci 498:186–199

    Article  CAS  Google Scholar 

  39. Lin FH, Lin JY, Gupta RD, Tournas JA, Burch JA, Selim MA, Monteiro-Riviere NA, Grichnik JM, Zielinski J, Pinnell SR (2005) Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J Invest Dermatol. 125:826–832

    Article  CAS  Google Scholar 

  40. Graversen HB, Becker EM, Skibsted LH, Andersen ML (2008) Antioxidant synergism between fruit juice and alpha-tocopherol. A comparison between high phenolic black chokeberry (Aronia melanocarpa) and high ascorbic blackcurrant (Ribes nigrum). Eur Food Res Technol 226:737–743

    Article  CAS  Google Scholar 

  41. Becker EM, Ntouma G, Skibsted LH (2007) Synergism and antagonism between quercetin and other chain-breaking antioxidants in lipid systems of increasing structural organization. Food Chem 103:1288–1296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a Grant 508/82-4 from Poznan University of Life Sciences, Poznan, Poland, and by a Grant N312 1410 33 from the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grażyna Neunert.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neunert, G., Górnaś, P., Dwiecki, K. et al. Synergistic and antagonistic effects between alpha-tocopherol and phenolic acids in liposome system: spectroscopic study. Eur Food Res Technol 241, 749–757 (2015). https://doi.org/10.1007/s00217-015-2500-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2500-4

Keywords

Navigation