Skip to main content

Advertisement

Log in

Brewer’s spent grain: source of value-added polysaccharides for the food industry in reference to the health claims

  • Review Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Brewer’s spent grain (BSG) is the most abundant by-product of the brewing industry, constituting approximately 85 % (w/w) of the total by-products generated during beer production. Rich in cellulose and non-cellulosic polysaccharides, lignin, and proteins, BSG provides extra nutritional value, thereby arousing the interest of the food industry. Annually, around 3.4 million t of BSG are produced within the European Union, and Germany contributes approximately 2 million t. BSG is reused either substantial or energetic. However, its main application has been limited to animal feeding. Based on the intense global pressure toward green environmental technology and increasing regulations in the feed sector, alternative application fields have gained importance. Because of its high protein and fiber contents, BSG can be an attractive source for value-added products in human nutrition. The focus is on the reported health effects of (1–3,1–4)-β-d-glucan and arabinoxylan (AX). Several scientific studies have shown that barley (1–3,1–4)-β-d-glucan reduces blood cholesterol levels. A cause and effect relationship has been established between the consumption of AX from wheat endosperm and the reduction of postprandial glycemic responses. The intention of this review is to focus on the extraction of (1–3,1–4)-β-d-glucan and AX from BSG as a source of value-added compounds for use as a nutraceutical. In view of AX and (1–3,1–4)-β-d-glucan yield, different methods of extraction are presented. Finally, technological trends and future perspectives to expand this market are discussed, focusing on promising strategies such as the use of pressurized hot water extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BSG:

Brewer’s spent grain

LFGB:

Lebensmittel-, Bedarfsgegenstände- und Futtermittelgesetzbuch

VIG:

Verbraucherinformationsgesetz

EFSA:

European Food Safety Authority

LDL:

Low-density lipoprotein

EU:

European Union

HCR:

Health Claims Regulation

M w :

Molecular weight average

DP:

Degree of polymerization

AX:

Arabinoxylan

References

  1. Canadean (2012) Anteil einzelner Getränke am weltweiten Getränkekonsum im Jahr 2011. Statista, Sachon

    Google Scholar 

  2. Brauer-Bund D (2014) Bierausstoß der Brauereien in Deutschland in den Jahren 1991 bis 2013 (in Millionen Hektolitern). Statista, Statista

  3. Group B-H (2014) Bierausstoß weltweit in den Jahren 1995 bis 2013 (in Milliarden Hektoliter). Statista, de.statista.com

  4. Townsley PM (1979) Preparation of commercial products from brewer’s waste grain and trub. MBAA Tech Q 16(3):130–134

    CAS  Google Scholar 

  5. McCarthy AL, O’Callaghan YC, Piggott CO, FitzGerald RJ, O’Brien NM (2013) Brewers’ spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: a review. Proc Nutr Soc 72(1):117–125. doi:10.1017/s0029665112002820

    CAS  Google Scholar 

  6. Mussatto SI, Dragone G, Roberto IC (2006) Brewers’ spent grain: generation, characteristics and potential applications. J Cereal Sci 43(1):1–14. doi:10.1016/j.jcs.2005.06.001

    CAS  Google Scholar 

  7. Kunze W (1998) Technologie Brauer und Mälzer. Versuchs- und Lehrsnstalt für Brauerei in Berlin (VLB), VLB Brelin

  8. Weber G (2009) Untersuchungen zur Silierung von Biertrebern. Logos Verlag, Berlin

    Google Scholar 

  9. Robertson JA, I’Anson KJA, Treimo J, Faulds CB, Brocklehurst TF, Eijsink VGH, Waldron KW (2010) Profiling brewers’ spent grain for composition and microbial ecology at the site of production. LWT Food Sci Technol 43(6):890–896. doi:10.1016/j.lwt.2010.01.019

    CAS  Google Scholar 

  10. Gupta S, Jaiswal AK, Abu-Ghannam N (2013) Optimization of fermentation conditions for the utilization of brewing waste to develop a nutraceutical rich liquid product. Ind Crops Prod 44:272–282. doi:10.1016/j.indcrop.2012.11.015

    CAS  Google Scholar 

  11. Pesta G (2008) Biertreberhydrolyseverfahren. Deutschland Patent

  12. Blümelhuber G (2002) Einfluß von Fettsäuren und Pflanzenölen auf die Eigenschaften eines Faser-Epoxydharz-Verbundwerkstoffs. Dissertation TU München

  13. Pappu A, Saxena M, Asolekar SR (2007) Solid wastes generation in India and their recycling potential in building materials. Build Environ 42(6):2311–2320. doi:10.1016/j.buildenv.2006.04.015

    Google Scholar 

  14. Aliyu S, Bala M (2011) Brewer’s spent grain: a review of its potentials and applications. Afr J Biotechnol 10(3):324–331. doi:10.5897/AJBx10.006

    CAS  Google Scholar 

  15. Moreira MM, Morais S, Carvalho DO, Barros AA, Delerue-Matos C, Guido LF (2013) Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Res Int 54(1):382–388. doi:10.1016/j.foodres.2013.07.023

    CAS  Google Scholar 

  16. Commission E (2012) establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. L 136/1, vol 432/2012. Official Journal of the European Union

  17. Endreß HU (2000) High quality resulting from product integrated protection: PIUS. Fruit Process 10:273–276

    Google Scholar 

  18. Kunzek H, Opel H, Senge B (1997) Rheological examination of material with cellular structure. II. Creep and oscillation measurements of apple material with cellular structure. Zeitschrift für Lebensmitteluntersuchung und Forschung 205:193–203

    CAS  Google Scholar 

  19. Senge B, Opel H, Kunzek H (1996) Rheologische Untersuchungen von zellstrukturierten Materialien. 1. Mitteilung: Konventionelle Untersuchung von zellstrukturiertem Apfelmaterial. Zeitschrift für Lebensmitteluntersuchung und Forschung 203:351–365

    CAS  Google Scholar 

  20. Cao L, Liu X, Qian T, Sun G, Guo Y, Chang F, Zhou S, Sun X (2011) Antitumor and immunomodulatory activity of arabinoxylans: a major constituent of wheat bran. Int J Biol Macromol 48(1):160–164. doi:10.1016/j.ijbiomac.2010.10.014

    CAS  Google Scholar 

  21. Estrada A, Yun CH, Van Kessel A, Li B, Hauta S, Laarveld B (1997) Immunomodulatory activities of oat β-glucan in vitro and in vivo. Microbiol Immunol 41(12):991–998

    CAS  Google Scholar 

  22. Hussain A, Claussen B, Ramachandran A, Williams R (2007) Prevention of type 2 diabetes: a review. Diabetes Res Clin Pract 76(3):317–326. doi:10.1016/j.diabres.2006.09.020

    CAS  Google Scholar 

  23. Meyer D, Stasse-Wolthuis M (2009) The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur J Clin Nutr 63(11):1277–1289

    CAS  Google Scholar 

  24. Niewold TA, Schroyen M, Geens MM, Verhelst RSB, Courtin CM (2012) Dietary inclusion of arabinoxylan oligosaccharides (AXOS) down regulates mucosal responses to a bacterial challenge in a piglet model. J Funct Foods 4(3):626–635

    CAS  Google Scholar 

  25. Qiang X, YongLie C, QianBing W (2009) Health benefit application of functional oligosaccharides. Carbohydr Polym 77(3):435–441. doi:10.1016/j.carbpol.2009.03.016

    Google Scholar 

  26. Samuelsen AB, Rieder A, Grimmer S, Michaelsen TE, Knutsen SH (2011) Immunomodulatory activity of dietary fiber: arabinoxylan and mixed-linked beta-glucan isolated from barley show modest activities in vitro. Int J Mol Sci 12(1):570–587

    CAS  Google Scholar 

  27. Zhang C, Huang K (2005) Characteristic immunostimulation by MAP, a polysaccharide isolated from the mucus of the loach, Misgurnus anguillicaudatus. Carbohydr Polym 59(1):75–82

    CAS  Google Scholar 

  28. Stojceska V, Ainsworth P (2008) The effect of different enzymes on the quality of high-fibre enriched brewer’s spent grain breads. Food Chem 110(4):865–872. doi:10.1016/j.foodchem.2008.02.074

    CAS  Google Scholar 

  29. Celus I, Brijs K, Delcour JA (2007) Enzymatic hydrolysis of brewers’ spent grain proteins and technofunctional properties of the resulting hydrolysates. J Agric Food Chem 55(21):8703–8710. doi:10.1021/jf071793c

    CAS  Google Scholar 

  30. da Silva AM, Tavares APM, Rocha CMR, Cristóvão RO, Teixeira JA, Macedo EA (2012) Immobilization of commercial laccase on spent grain. Process Biochem 47(7):1095–1101. doi:10.1016/j.procbio.2012.03.021

    Google Scholar 

  31. Poerschmann J, Weiner B, Wedwitschka H, Baskyr I, Koehler R, Kopinke FD (2014) Characterization of biocoals and dissolved organic matter phases obtained upon hydrothermal carbonization of brewer’s spent grain. Bioresour Technol 164:162–169. doi:10.1016/j.biortech.2014.04.052

    CAS  Google Scholar 

  32. Forssell P, Kontkanen H, Schols HA, Hinz S, Eijsink VGH, Treimo J, Robertson JA, Waldron KW, Faulds CB, Buchert J (2008) Hydrolysis of brewers’ spent grain by carbohydrate degrading enzymes. J Inst Brew 114(4):306–314. doi:10.1002/j.2050-0416.2008.tb00774.x

    CAS  Google Scholar 

  33. Santos M, Jiménez JJ, Bartolomé B, Gómez-Cordovés C, del Nozal MJ (2003) Variability of brewer’s spent grain within a brewery. Food Chem 80(1):17–21. doi:10.1016/S0308-8146(02)00229-7

    CAS  Google Scholar 

  34. Kissel LT, Prentice N (1979) Protein and fiber enrichment of cookie flour with brewers’ spent grain. Cereal Chem 56:261–266

    Google Scholar 

  35. Coelho E, Rocha MA, Saraiva JA, Coimbra MA (2014) Microwave superheated water and dilute alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydr Polym 99:415–422. doi:10.1016/j.carbpol.2013.09.003

    CAS  Google Scholar 

  36. Kabel MA, Carvalheiro F, Garrote G, Avgerinos E, Koukios E, Parajó JC, Gı́rio FM, Schols HA, Voragen AGJ (2002) Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohydr Polym 50(1):47–56. doi:10.1016/S0144-8617(02)00045-0

    CAS  Google Scholar 

  37. Mandalari G, Faulds CB, Sancho AI, Saija A, Bisignano G, LoCurto R, Waldron KW (2005) Fractionation and characterisation of arabinoxylans from brewers’ spent grain and wheat bran. J Cereal Sci 42(2):205–212. doi:10.1016/j.jcs.2005.03.001

    CAS  Google Scholar 

  38. Kanauchi O, Mitsuyama K, Araki Y (2001) Development of a functional germinated barley foodstuff from brewer’s spent grain for the treatment of ulcerative colitis. J Am Soc Brew Chem 59(2):59–62

    CAS  Google Scholar 

  39. Mussatto SI, Roberto IC (2005) Acid hydrolysis and fermentation of brewer’s spent grain to produce xylitol. J Sci Food Agric 85(14):2453–2460. doi:10.1002/jsfa.2276

    CAS  Google Scholar 

  40. Russ W, Mörtel H, Meyer-Pittroff R (2005) Application of spent grains to increase porosity in bricks. Constr Build Mater 19(2):117–126

    Google Scholar 

  41. Rudi H, Uhlen AK, Harstad OM, Munck L (2006) Genetic variability in cereal carbohydrate compositions and potentials for improving nutritional value. Anim Feed Sci Technol 130(1–2):55–65. doi:10.1016/j.anifeedsci.2006.01.017

    CAS  Google Scholar 

  42. Skendi A, Biliaderis CG, Lazaridou A, Izydorczyk MS (2003) Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. J Cereal Sci 38(1):15–31. doi:10.1016/S0733-5210(02)00137-6

    CAS  Google Scholar 

  43. Bacic A, Stone B (1981) Isolation and ultrastructure of aleurone cell walls from wheat and barley. Funct Plant Biol 8(5):453–474. doi:10.1071/PP9810453

    Google Scholar 

  44. Fincher GB (1975) Morphology and chemical composition of barley endosperm cell walls. J Inst Brew 81(2):116–122. doi:10.1002/j.2050-0416.1975.tb03672.x

    CAS  Google Scholar 

  45. Forrest IS, Wainwright T (1977) The mode of binding of β-glucans and pentosans in barley endosperm cell walls. J Inst Brew 83(5):279–286. doi:10.1002/j.2050-0416.1977.tb03809.x

    CAS  Google Scholar 

  46. Gómez C, Navarro A, Manzanares P, Horta A, Carbonell JV (1997) Physical and structural properties of barley (1 → 3), (1 → 4)-β-d-glucan. Part II. Viscosity, chain stiffness and macromolecular dimensions. Carbohydr Polym 32(1):17–22. doi:10.1016/S0144-8617(96)00127-0

    Google Scholar 

  47. Wood PJ (2004) Relationships between solution properties of cereal β-glucans and physiological effects: a review. Trends Food Sci Technol 15(6):313–320. doi:10.1016/j.tifs.2003.03.001

    CAS  Google Scholar 

  48. Fincher GB, Stone BA (2004) Chemistry of non-starch polysaccharides. Encyclopedia of grain science. Elsevier, Oxford

    Google Scholar 

  49. Izydorczyk MS, Dexter JE (2008) Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products: a review. Food Res Int 41(9):850–868. doi:10.1016/j.foodres.2008.04.001

    CAS  Google Scholar 

  50. Bijkerk CJ, Muris JWM, Knottnerus JA, Hoes AW, De Wit NJ (2004) Systematic review: the role of different types of fibre in the treatment of irritable bowel syndrome. Aliment Pharmacol Ther 19(3):245–251. doi:10.1111/j.0269-2813.2004.01862.x

    CAS  Google Scholar 

  51. Howarth NC, Saltzman E, Roberts SB (2001) Dietary fiber and weight regulation. Nutr Rev 59(5):129–139

    CAS  Google Scholar 

  52. Truswell AS (2002) Cereal grains and coronary heart disease. Eur J Clin Nutr 56(1):1–14. doi:10.1038/sj.ejcn.1601283

    CAS  Google Scholar 

  53. Reimer RA, Thomson ABR, Rajotte RV, Basu TK, Ooraikul B, McBurney MI (2000) Proglucagon messenger ribonucleic acid and intestinal glucose uptake are modulated by fermentable fiber and food intake in diabetic rats. Nutr Res 20(6):851–864. doi:10.1016/S0271-5317(00)00169-X

    CAS  Google Scholar 

  54. Thorburn A, Muir J, Proietto J (1993) Carbohydrate fermentation decreases hepatic glucose output in healthy subjects. Metabolism 42(6):780–785. doi:10.1016/0026-0495(93)90249-N

    CAS  Google Scholar 

  55. Keogh GF, Cooper GJS, Mulvey TB, McArdle BH, Coles GD, Monro JA, Poppitt SD (2003) Randomized controlled crossover study of the effect of a highly β-glucan-enriched barley on cardiovascular disease risk factors in mildly hypercholesterolemic men. Am J Clin Nutr 78(4):711–718

    CAS  Google Scholar 

  56. Dikeman CL, Fahey GC (2006) Viscosity as related to dietary fiber: a review. Crit Rev Food Sci Nutr 46(8):649–663. doi:10.1080/10408390500511862

    CAS  Google Scholar 

  57. Wood PJ, Weisz J, Blackwell BA (1994) Structural studies of (1/3) (1/4)-b-d-glucans by 13C-NMR by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chem 71:301–307

    CAS  Google Scholar 

  58. Tappy L, Gugolz E, Wursch P (1996) Effects of breakfast cereals containing various amounts of beta-glucan fibers on plasma glucose and insulin responses in NIDDM subjects. Diabetes Care 19(8):831–834

    CAS  Google Scholar 

  59. Wood PJ, Beer MU, Butler G (2000) Evaluation of role of concentration and molecular weight of oat beta-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose load. Br J Nutr 84(1):19–23

    CAS  Google Scholar 

  60. EFSA Panel on Dietetic Products NaAN (2009) Scientific Opinion on the substantiation of health claims related to beta glucans and maintenance of normal blood cholesterol concentrations (ID 754, 755, 757, 801, 1465, 2934) and maintenance or achievement of a normal body weight (ID 820, 823) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 7(9):1254:18 pp

  61. Venn BJ, Green TJ (2007) Glycemic index and glycemic load: measurement issues and their effect on diet-disease relationships. Eur J Clin Nutr 61(Suppl 1):S122–S131. doi:10.1038/sj.ejcn.1602942

    CAS  Google Scholar 

  62. Ceriello A, Davidson J, Hanefeld M, Leiter L, Monnier L, Owens D, Tajima N, Tuomilehto J (2006) Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr Metab Cardiovasc Dis 16(7):453–456. doi:10.1016/j.numecd.2006.05.006

    CAS  Google Scholar 

  63. EFSA Panel on Dietetic Products NaAN (2011) Scientific Opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and “digestive function” (ID 850) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9(6):2207:21 pp

  64. EFSA Panel on Dietetic Products NaAN (2011) Scientific Opinion on the substantiation of a health claim related to barley beta-glucans and lowering of blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J 9(12):2471:13 pp

  65. Andersson AAM, Elfverson C, Andersson R, Regnér S, Åman P (1999) Chemical and physical characteristics of different barley samples. J Sci Food Agric 79(7):979–986. doi:10.1002/(SICI)1097-0010(19990515)79:7<979:AID-JSFA313>3.0.CO;2-L

    CAS  Google Scholar 

  66. Hong BH, Rubenthaler GL, Allen RE (1995) Wheat pentosans. I. Cultivar variation and relationship to kernel hardness. Cereal Chem 66:369–373

    Google Scholar 

  67. Saulnier L, Peneau N, Thibault JF (1995) Variability in grain extract viscosity and water-soluble arabinoxylan content in wheat. J Cereal Sci 22(3):259–264. doi:10.1006/jcrs.1995.0062

    CAS  Google Scholar 

  68. Hoffmann RA, Leeflang BR, de Barse MMJ, Kamerling JP, Vliegenthart JFG (1991) Characterisation by 1H-n.m.r. spectroscopy of oligosaccharides, derived from arabinoxylans of white endosperm of wheat, that contain the elements →4)[α-l-Araf-(1-ar3)]-β-d-Xylp-(1→ or →4)[α-l-Araf-(1→2)][α-lAraf-(1→3)]-β-d-Xylp-(1→. Carbohydr Res 221(1):63–81. doi:10.1016/0008-6215(91)80049-S

    CAS  Google Scholar 

  69. Izydorczyk MS, Biliaderis CG (1994) Studies on the structure of wheat-endosperm arabinoxylans. Carbohydr Polym 24(1):61–71. doi:10.1016/0144-8617(94)90118-X

    CAS  Google Scholar 

  70. Perlin AS (1951) Structure of the soluble pentosans of wheat flours. Cereal Chem 28:382–393

    CAS  Google Scholar 

  71. Renard CMGC, Rouau X, Thibault JF (1990) Structure and properties of water-soluble pentosans from wheat flour. Sci Alim 10:283–292

    CAS  Google Scholar 

  72. Gruppen H, Hamer RJ, Voragen AGJ (1991) Barium hydroxide as a tool to extract pure arabinoxylans from water-insoluble cell wall material of wheat flour. J Cereal Sci 13(3):275–290. doi:10.1016/S0733-5210(09)80006-4

    CAS  Google Scholar 

  73. Li Y, Lu J, Gu G, Shi Z, Mao Z (2005) Studies on water-extractable arabinoxylans during malting and brewing. Food Chem 93(1):33–38. doi:10.1016/j.foodchem.2004.08.040

    CAS  Google Scholar 

  74. Vinkx CJA, Delcour JA (1996) Rye (Secale cereale L.) arabinoxylans: a critical review. J Cereal Sci 24(1):1–14. doi:10.1006/jcrs.1996.0032

    CAS  Google Scholar 

  75. Bunzel M, Ralph J, Marita JM, Hatfield RD, Steinhart H (2001) Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agric 81(7):653–660. doi:10.1002/jsfa.861

    CAS  Google Scholar 

  76. Pritchard JR, Lawrence GJ, Larroque O, Li Z, Laidlaw HKC, Morell MK, Rahman S (2011) A survey of β-glucan and arabinoxylan content in wheat. J Sci Food Agric 91(7):1298–1303. doi:10.1002/jsfa.4316

    CAS  Google Scholar 

  77. Belitz H-D, Belitz H-D, Grosch W, Schieberle P (2001) Lehrbuch Der Lebensmittelchemie. Springer, Berlin

    Google Scholar 

  78. Narziss L, Back W (2009) Die Technologie der Würzebereitung 2. Wiley-VCH, Weinheim

    Google Scholar 

  79. Rakszegi M, Lovegrove A, Balla K, Láng L, Bedő Z, Veisz O, Shewry PR (2014) Effect of heat and drought stress on the structure and composition of arabinoxylan and β-glucan in wheat grain. Carbohydr Polym 102:557–565. doi:10.1016/j.carbpol.2013.12.005

    CAS  Google Scholar 

  80. Meuser F, Suckow P (1986) Non-starch polysaccharides. Chemistry and physics of baking: materials, processes, and products. Royal Society of Chemistry, Burlington House, London

    Google Scholar 

  81. Frederix SA, Van Hoeymissen KE, Courtin CM, Delcour JA (2004) Water-extractable and water-unextractable arabinoxylans affect gluten agglomeration behavior during wheat flour gluten–starch separation. J Agric Food Chem 52(26):7950–7956. doi:10.1021/jf049041v

    CAS  Google Scholar 

  82. Pedreschi R, Campos D, Noratto G, Chirinos R, Cisneros-Zevallos L (2003) Andean yacon root (Smallanthus sonchifolius Poepp. Endl) fructooligosaccharides as a potential novel source of prebiotics. J Agric Food Chem 51(18):5278–5284. doi:10.1021/jf0344744

    CAS  Google Scholar 

  83. Wang J, Sun B, Cao Y, Wang C (2010) In vitro fermentation of xylooligosaccharides from wheat bran insoluble dietary fiber by Bifidobacteria. Carbohydr Polym 82(2):419–423. doi:10.1016/j.carbpol.2010.04.082

    CAS  Google Scholar 

  84. Pool-Zobel BL (2005) Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Br J Nutr 93(Suppl 1):S73–S90

    CAS  Google Scholar 

  85. Roberfroid MB (2005) Introducing inulin-type fructans. Br J Nutr 93(1):13–25

    Google Scholar 

  86. Van der Meulen R, Avonts L, De Vuyst L (2004) Short fractions of oligofructose are preferentially metabolized by bifidobacterium animalis DN-173 010. Appl Environ Biol 70(4):1923–1930

    Google Scholar 

  87. Corradini C, Cavazza A, Bignardi C (2012) High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: principles and applications. Int J Carbohydr Chem 2012:13. doi:10.1155/2012/487564

    Google Scholar 

  88. Lu ZX, Walker KZ, Muir JG, Mascara T, O’Dea K (2000) Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. Am J Clin Nutr 71(5):1123–1128

    CAS  Google Scholar 

  89. EFSA Panel on Dietetic Products NaAN (2011) Scientific Opinion on the substantiation of health claims related to arabinoxylan produced from wheat endosperm and reduction of post-prandial glycaemic responses (ID 830) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9(6):2205:15 pp

  90. Meyer-Pittroff R (1988) Die energetische Verwetung von Biertrebern. Brauwelt 26:1156–1158

    Google Scholar 

  91. Zanker G, Kepplinger WL (2002) Die Verwertung von Biertrebern im Brauereiverbund. Brauwelt 142:1742–1747

    CAS  Google Scholar 

  92. Nishio N, Nakashimada Y (2007) Recent development of anaerobic digestion processes for energy recovery from wastes. J Biosci Bioeng 103(2):105–112. doi:10.1263/jbb.103.105

    CAS  Google Scholar 

  93. Ezeonu FC, Okaka ANC (1996) Process kinetics and digestion efficiency of anaerobic batch fermentation of brewer’s spent grains (BSG). Process Biochem 31(1):7–12. doi:10.1016/0032-9592(94)00064-6

    CAS  Google Scholar 

  94. Rieker C, Moeller M, Sommer K (1992) Anaerobic degradation of beer spent grains for biogas production. Brauwelt 132:716–721

    CAS  Google Scholar 

  95. Mahmood ASN, Brammer JG, Hornung A, Steele A, Poulston S (2013) The intermediate pyrolysis and catalytic steam reforming of Brewers spent grain. J Anal Appl Pyrol 103:328–342. doi:10.1016/j.jaap.2012.09.009

    CAS  Google Scholar 

  96. Baskyr I, Weiner B, Riedel G, Poerschmann J, Kopinke FD (2014) Wet oxidation of char–water-slurries from hydrothermal carbonization of paper and brewer’s spent grains. Fuel Process Technol 128:425–431. doi:10.1016/j.fuproc.2014.07.042

    CAS  Google Scholar 

  97. Mussatto SI, Moncada J, Roberto IC, Cardona CA (2013) Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: the Brazilian case. Bioresour Technol 148:302–310. doi:10.1016/j.biortech.2013.08.046

    CAS  Google Scholar 

  98. Xiros C, Christakopoulos P (2009) Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuels 2(1):4

    Google Scholar 

  99. Xiros C, Topakas E, Katapodis P, Christakopoulos P (2008) Evaluation of Fusarium oxysporum as an enzyme factory for the hydrolysis of brewer’s spent grain with improved biodegradability for ethanol production. Ind Crops Prod 28(2):213–224. doi:10.1016/j.indcrop.2008.02.004

    CAS  Google Scholar 

  100. Xiros C, Topakas E, Katapodis P, Christakopoulos P (2008) Hydrolysis and fermentation of brewer’s spent grain by Neurospora crassa. Bioresour Technol 99(13):5427–5435. doi:10.1016/j.biortech.2007.11.010

    CAS  Google Scholar 

  101. Silva JP, Sousa S, Gonçalves I, Porter JJ, Ferreira-Dias S (2004) Modelling adsorption of acid orange 7 dye in aqueous solutions to spent brewery grains. Sep Purif Technol 40(2):163–170. doi:10.1016/j.seppur.2004.02.006

    CAS  Google Scholar 

  102. Pedro Silva J, Sousa S, Rodrigues J, Antunes H, Porter JJ, Gonçalves I, Ferreira-Dias S (2004) Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains. Sep Purif Technol 40(3):309–315. doi:10.1016/j.seppur.2004.03.010

    CAS  Google Scholar 

  103. Low K-S, Lee CK, Low CH (2001) Sorption of chromium (VI) by spent grain under batch conditions. J Appl Polym Sci 82(9):2128–2134. doi:10.1002/app.2058

    CAS  Google Scholar 

  104. Li Q, Chai L, Yang Z, Wang Q (2009) Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions. Appl Surf Sci 255(7):4298–4303. doi:10.1016/j.apsusc.2008.11.024

    CAS  Google Scholar 

  105. Lu S, Gibb SW (2008) Copper removal from wastewater using spent-grain as biosorbent. Bioresour Technol 99(6):1509–1517. doi:10.1016/j.biortech.2007.04.024

    CAS  Google Scholar 

  106. Chiang P-C, Chang P, You J-H (1992) Innovative technology for controlling VOC emissions. J Hazard Mater 31(1):19–28. doi:10.1016/0304-3894(92)87036-F

    CAS  Google Scholar 

  107. Sodhi HS, Garcha HS, Kiran U (1985) Screening of mycoflora of spent-up brewers’ grains for aflatoxin production. J Res Punjab Agric Univ 22:331–336

  108. Novik GI, Wawrzynczyk J, Norrlow O, Szwajcer-Dey E (2007) Fractions of barley spent grain as media for growth of probiotic bacteria. Mikrobiologiia 76(6):902–907

    CAS  Google Scholar 

  109. Szponar B, Pawlik KJ, Gamian A, Szwajcer Dey E (2003) Protein fraction of barley spent grain as a new simple medium for growth and sporulation of soil actinobacteria. Biotechnol Lett 25(20):1717–1721

    CAS  Google Scholar 

  110. Gregori A, Švagelj M, Pahor B, Berovič M, Pohleven F (2008) The use of spent brewery grains for Pleurotus ostreatus cultivation and enzyme production. N Biotechnol 25(2–3):157–161. doi:10.1016/j.nbt.2008.08.003

    CAS  Google Scholar 

  111. Terrasan CRF, Temer B, Duarte MCT, Carmona EC (2010) Production of xylanolytic enzymes by Penicillium janczewskii. Bioresour Technol 101(11):4139–4143. doi:10.1016/j.biortech.2010.01.011

    CAS  Google Scholar 

  112. Panagiotou G, Granouillet P, Olsson L (2006) Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation. Appl Microbiol Biotechnol 72(6):1117–1124. doi:10.1007/s00253-006-0394-6

    CAS  Google Scholar 

  113. Mussatto SI (2014) Brewer’s spent grain: a valuable feedstock for industrial applications. J Sci Food Agric 94(7):1264–1275. doi:10.1002/jsfa.6486

    CAS  Google Scholar 

  114. Mussatto SI, Dragone G, Roberto IC (2005) Influence of the toxic compounds present in brewer’s spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Process Biochem 40(12):3801–3806. doi:10.1016/j.procbio.2005.06.024

    CAS  Google Scholar 

  115. Mussatto SI, Dragone G, Roberto IC (2005) Kinetic behavior of Candida guilliermondii yeast during xylitol production from brewer’s spent grain hemicellulosic hydrolysate. Biotechnol Prog 21(4):1352–1356. doi:10.1021/bp0501118

    CAS  Google Scholar 

  116. Mussatto SI, Roberto IC (2008) Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem 43(5):540–546. doi:10.1016/j.procbio.2008.01.013

    CAS  Google Scholar 

  117. Carvalheiro F, Duarte LC, Lopes S, Parajó JC, Pereira H, Gı́rio FM (2005) Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem 40(3–4):1215–1223. doi:10.1016/j.procbio.2004.04.015

    CAS  Google Scholar 

  118. Duarte LC, Carvalheiro F, Lopes S, Marques S, Parajo JC, Girio FM (2004) Comparison of two posthydrolysis processes of Brewery’s spent grain autohydrolysis liquor to produce a pentose-containing culture medium. Appl Biochem Biotechnol 113–116:1041–1058

    Google Scholar 

  119. Islam MS (2011) Effects of xylitol as a sugar substitute on diabetes-related parameters in nondiabetic rats. J Med Food 14(5):505–511. doi:10.1089/jmf.2010.0015

    CAS  Google Scholar 

  120. Uittamo J, Nieminen MT, Kaihovaara P, Bowyer P, Salaspuro M, Rautemaa R (2011) Xylitol inhibits carcinogenic acetaldehyde production by Candida species. Int J Cancer 129(8):2038–2041. doi:10.1002/ijc.25844

    CAS  Google Scholar 

  121. Elamin K, Sjostrom J, Jansson H, Swenson J (2012) Calorimetric and relaxation properties of xylitol-water mixtures. J Chem Phys 136(10):104508. doi:10.1063/1.3692609

    Google Scholar 

  122. Ritter AV, Bader JD, Leo MC, Preisser JS, Shugars DA, Vollmer WM, Amaechi BT, Holland JC (2013) Tooth-surface-specific effects of xylitol: randomized trial results. J Dent Res 92(6):512–517. doi:10.1177/0022034513487211

    CAS  Google Scholar 

  123. Mussatto SI, Fernandes M, Dragone G, Mancilha IM, Roberto IC (2007) Brewer’s spent grain as raw material for lactic acid production by Lactobacillus delbrueckii. Biotechnol Lett 29(12):1973–1976. doi:10.1007/s10529-007-9494-3

    CAS  Google Scholar 

  124. Cabacang R, Joson L, Conoza E, Dela Cruz E (1997) Lactic acid production from local agricultural resources. Biotechnol Sustain Util Biol Res Trop 11:237–242

  125. Bamba T, Kanauchi O, Andoh A, Fujiyama Y (2002) A new prebiotic from germinated barley for nutraceutical treatment of ulcerative colitis. J Gastroenterol Hepatol 17(8):818–824

    CAS  Google Scholar 

  126. Kanauchi O, Agata K (1997) Protein, and dietary fiber-rich new foodstuff from brewer’s spent grain increased excretion of feces and jejunum mucosal protein content in rats. Biosci Biotechnol Biochem 61(1):29–33

    CAS  Google Scholar 

  127. Jacobs DR Jr, Gallaher DD (2004) Whole grain intake and cardiovascular disease: a review. Curr Atheroscler Rep 6(6):415–423

    Google Scholar 

  128. Koh-Banerjee P, Rimm EB (2003) Whole grain consumption and weight gain: a review of the epidemiological evidence, potential mechanisms and opportunities for future research. Proc Nutr Soc 62(1):25–29. doi:10.1079/pns2002232

    CAS  Google Scholar 

  129. Liu S, Willett WC, Manson JE, Hu FB, Rosner B, Colditz G (2003) Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr 78(5):920–927

    CAS  Google Scholar 

  130. Aldoori WH, Giovannucci EL, Rockett HR, Sampson L, Rimm EB, Willett WC (1998) A prospective study of dietary fiber types and symptomatic diverticular disease in men. J Nutr 128(4):714–719

    CAS  Google Scholar 

  131. Jemal A, Ward E, Hao Y, Thun M (2005) Trends in the leading causes of death in the United States, 1970–2002. JAMA 294(10):1255–1259. doi:10.1001/jama.294.10.1255

    CAS  Google Scholar 

  132. Fastnaught CE (2001) Barley fiber. In: Cho SS, Dreher ML (eds) Handbook of dietary fiber. Marcel Dekker, New York, p 321

  133. Brennan CS, Cleary LJ (2005) The potential use of cereal (1→3,1→4)-β-d-glucans as functional food ingredients. J Cereal Sci 42(1):1–13. doi:10.1016/j.jcs.2005.01.002

    CAS  Google Scholar 

  134. Kanauchi O, Fujiyama Y, Mitsuyama K, Araki Y, Ishii T, Nakamura T, Hitomi Y, Agata K, Saiki T, Andoh A, Toyonaga A, Bamba T (1999) Increased growth of bifidobacterium and eubacterium by germinated barley foodstuff, accompanied by enhanced butyrate production in healthy volunteers. Int J Mol Med 3(2):175–179

    CAS  Google Scholar 

  135. Huige NJ (1994) Brewery by-products and effluents. Handbook of Brewing. Marcel Dekker, New York

    Google Scholar 

  136. Miranda MZ, Grossmann MVE, Nabeshima EH (1994) Utilization of brewer’s spent grain for the production of snacks with fiber. 1. Physicochemical characteristics. Braz Arch Biol Technol 37:483–493

    Google Scholar 

  137. Miranda MZ, Grossmann MVE, Prudencioferreira SH, Nabeshima EH (1994) Utilization of brewer spent grain (BSG) for production of snacks with fiber. 2. Sensory analysis of snacks. Braz Arch Biol Technol 37:9–21

    Google Scholar 

  138. Stojceska V, Ainsworth P, Plunkett A, İbanogˇlu S (2008) The recycling of brewer’s processing by-product into ready-to-eat snacks using extrusion technology. J Cereal Sci 47(3):469–479. doi:10.1016/j.jcs.2007.05.016

    CAS  Google Scholar 

  139. Ainsworth P, İbanoğlu Ş, Plunkett A, İbanoğlu E, Stojceska V (2007) Effect of brewers spent grain addition and screw speed on the selected physical and nutritional properties of an extruded snack. J Food Eng 81(4):702–709. doi:10.1016/j.jfoodeng.2007.01.004

    CAS  Google Scholar 

  140. Reis SF, Abu-Ghannam N (2014) Antioxidant capacity, arabinoxylans content and in vitro glycaemic index of cereal-based snacks incorporated with brewer’s spent grain. LWT Food Sci Technol 55(1):269–277. doi:10.1016/j.lwt.2013.09.004

    CAS  Google Scholar 

  141. Koukios EG, Pastou A, Koullas DP, Sereti V, Kolosis F (1999) New green products from cellulosics. Biomass: a growth opportunity in green energy and value-added products. Permagon, Oxford

    Google Scholar 

  142. Garrote G, Domínguez H, Parajó JC (1999) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol 74(11):1101–1109. doi:10.1002/(SICI)1097-4660(199911)74:11<1101:AID-JCTB146>3.0.CO;2-M

    CAS  Google Scholar 

  143. Meneses NGT, Martins S, Teixeira JA, Mussatto SI (2013) Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep Purif Technol 108:152–158. doi:10.1016/j.seppur.2013.02.015

    CAS  Google Scholar 

  144. Faulds CB, Sancho AI, Bartolome B (2002) Mono- and dimeric ferulic acid release from brewer’s spent grain by fungal feruloyl esterases. Appl Microbiol Biotechnol 60(4):489–494. doi:10.1007/s00253-002-1140-3

    CAS  Google Scholar 

  145. Mussatto SI, Dragone G, Roberto IC (2007) Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain. Ind Crops Prod 25(2):231–237. doi:10.1016/j.indcrop.2006.11.001

    CAS  Google Scholar 

  146. Bartolomé B, Faulds CB, Williamson G (1997) Enzymic release of ferulic acid from barley spent grain. J Cereal Sci 25(3):285–288. doi:10.1006/jcrs.1996.0091

    Google Scholar 

  147. Pepper T, Olinger PM (1988) Xylitol in sugar-free confections. Food Technol 42:98–106

    Google Scholar 

  148. Kabel MA, Schols HA, Voragen AGJ (2002) Complex xylo-oligosaccharides identified from hydrothermally treated Eucalyptus wood and brewery’s spent grain. Carbohydr Polym 50(2):191–200. doi:10.1016/S0144-8617(02)00022-X

    CAS  Google Scholar 

  149. Carvalheiro F (2004) Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour Technol 91(1):93–100. doi:10.1016/s0960-8524(03)00148-2

    CAS  Google Scholar 

  150. Böhm N (1998), Universität Hamburg, Hamburg

  151. Ahmad A, Anjum FM, Zahoor T, Nawaz H, Din A (2009) Physicochemical and functional properties of barley β-glucan as affected by different extraction procedures. Int J Food Sci Technol 44(1):181–187. doi:10.1111/j.1365-2621.2008.01721.x

    CAS  Google Scholar 

  152. Du B, Zhu F, Xu B (2014) β-Glucan extraction from bran of hull-less barley by accelerated solvent extraction combined with response surface methodology. J Cereal Sci 59(1):95–100. doi:10.1016/j.jcs.2013.11.004

    CAS  Google Scholar 

  153. Benito-Román Ó, Alonso E, Cocero MJ (2013) Pressurized hot water extraction of β-glucans from waxy barley. J Supercrit Fluids 73:120–125. doi:10.1016/j.supflu.2012.09.014

    Google Scholar 

  154. Benito-Román Ó, Alonso E, Gairola K, Cocero MJ (2013) Fixed-bed extraction of β-glucan from cereals by means of pressurized hot water. J Supercrit Fluids 82:122–128. doi:10.1016/j.supflu.2013.07.003

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Martin Zarnkow, Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, D-85354 Freising, Germany for his assistance.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Procopio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steiner, J., Procopio, S. & Becker, T. Brewer’s spent grain: source of value-added polysaccharides for the food industry in reference to the health claims. Eur Food Res Technol 241, 303–315 (2015). https://doi.org/10.1007/s00217-015-2461-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2461-7

Keywords

Navigation