Skip to main content
Log in

Influence of novel fructans produced by selected acetic acid bacteria on the volume and texture of wheat breads

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This work presents for the first time the positive functional effects of different fructans produced by acetic acid bacteria on the volume and texture of breads. A total of 21 strains from different genera were screened for their ability to synthesize high amounts of homopolysaccharides from sucrose. Gluconobacter frateurii TMW 2.767, Gluconobacter cerinus DSM 9533, Neoasaia chiangmaiensis NBRC 101099, and Kozakia baliensis DSM 14400 were shown to produce high exopolysaccharide (EPS) yields ranging from 6 to 12 g/L in liquid gluconate media supplemented with 80 g/L sucrose. The isolated, lyophilized polysaccharides of these strains were determined as fructan-like homopolymers via high-performance liquid chromatography analysis and subsequently used as baking ingredients for wheat breads. The addition of each tested fructan in two dosages (1 and 2% w/w flour) caused an increased volume and clear softening effect of fresh wheat breads. Furthermore, a retarded staling of the EPS breads was observed during 1-week storage. The highest values of volume increase were detected for breads baked with 2% fructan of N. chiangmaiensis (6.6%) and K. baliensis (5.5%). The crumb hardness of fresh breads was clearly affected when adding the lowest dosage (1%) of each tested sugar polymer (18–26% softer than control breads). By trend, fructans of N. chiangmaiensis and K. baliensis retarded bread staling more effectively than fructans of G. frateurii and G. cerinus. Remarkably, increased volume, softening, and antistaling of wheat breads were already clearly observed upon addition of each isolated fructan in the lowest tested dosage (1%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pullo M, Giudici P (2008) Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection. Int J of Food Microbiol 125:46–53

    Article  Google Scholar 

  2. Kowalsky P, Blum W, Weber T (2011) Produkt- und Markendifferenzierung als Ausdruck einer Unternehmensphilosophie. In: Völckner F, Willers C, Weber T. (eds) Markendifferenzierung: Innovative Konzepte zur erfolgreichen Markenprofilierung. Gabler Verlag, Springer Fachmedien GmbH, Wiesbaden, pp 245–258

  3. Dufresne C, Farnworth E (2000) Tea, Kombucha, and health: a review. Food Res Int 33:409–421

    Article  CAS  Google Scholar 

  4. Kornmann H, Duboc P, Marison I, von Stockar U (2003) Influence of nutritional factors on the nature, yield, and composition of exopolysaccharides produced by Gluconacetobacter xylinus I-2281. Appl Environ Microbiol 69:6091–6098

    Article  CAS  Google Scholar 

  5. Waldherr FW, Vogel RF (2009) Commercial exploitation of homo-exopolysaccharides in non-dairy food systems. In: Ullrich M (ed) Bacterial polysaccharides: current innovations and future trends. Caister Academic Press, Norwich, pp 313–329

    Google Scholar 

  6. Korakli M, Vogel RF (2006) Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesised glycans. Appl Microbiol Biotechnol 71:790–803

    Article  CAS  Google Scholar 

  7. Maiorano AE, Piccoli RM, da Silva ES, de Andrade Rodrigues MF (2008) Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnol Lett 30:1867–1877

    Article  CAS  Google Scholar 

  8. Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46

    Article  CAS  Google Scholar 

  9. Korakli M, Gänzle MG, Vogel RF (2002) Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J Appl Microbiol 92:958–965

    Article  CAS  Google Scholar 

  10. Tieking M, Korakli M, Ehrmann MA, Vogel RF (2003) In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl Environ Microbiol 69:945–952

    Article  CAS  Google Scholar 

  11. Sivam AS, Sun-Waterhouse D, Quek S, Perera CO (2010) Properties of bread dough with added fiber polysaccharides and phenolic antioxidants: a review. J Food Sci 75:163–174

    Article  Google Scholar 

  12. Adachi O, Matsushita K, Shinagawa E, Ameyama M (1979) Occurrence of old yellow enzyme in Gluconobacter suboxydans, and the cyclic regeneration of NADP. J Biochem 86:699–709

    CAS  Google Scholar 

  13. Kaditzky S, Vogel RF (2008) Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli. Eur Food Res Technol 228:291–299

    Article  CAS  Google Scholar 

  14. Arrieta J, Hernandez L, Coego A, Suarez V, Balmori E, Menendez C, Petit-Glatron MF, Chambert R, Selman-Housein G (1996) Molecular characterization of the levansucrase gene from the endophytic sugarcane bacterium Acetobacter diazotrophicus SRT4. Microbiology 142:1077–1085

    Article  CAS  Google Scholar 

  15. Lisdiyanti P, Kawasaki H, Widyastuti Y, Saono S, Seki T, Yamada Y, Uchimura T, Komagata K (2002) Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the a-proteobacteria. Int J Syst Evol Microbiol 52:813–818

    Article  CAS  Google Scholar 

  16. Kato N, Mizuno M, Nakai Y, Nozaki K, Suga H, Kanda T, Yamanaka S, Amano Y (2007) Structural analysis of the water-soluble carbohydrate from Asaia bogorensis by NMR spectroscopy. J Appl Glycosci 54:231–233

    Article  CAS  Google Scholar 

  17. Velazquez-Hernandez ML, Baizabal-Aguirre VM, Bravo-Patin A, Cajero-Jua M, Chavez-Moctezuma MP, Valdez-Alarco JJ (2009) Microbial fructosyltransferases and the role of fructans. J Appl Microbiol 106:1763–1778

    Article  CAS  Google Scholar 

  18. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  Google Scholar 

  19. Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A, França L, Magalhaes V, Alqueres S, Cardoso A, Almeida W, Loureiro MM, Nogueira E, Cidade D, Oliveira D, Simao T, Macedo J, Valadao A, Dreschsel M, Freitas F, Vidal M, Guedes H, Rodrigues E, Meneses C, Brioso P, Pozzer L, Figueiredo D, Montano H, Junior J, de Souza Filho G, Quintana Flores VM, Ferreira B, Branco A, Gonzalez P, Guillobel H, Lemos M, Seibel L, Macedo J, Alves-Ferreira M, Sachetto-Martins G, Coelho A, Santos E, Amaral G, Neves A, Pacheco AB, Carvalho D, Lery L, Bisch P, Rössle SC, Ürmenyi T, Rael Pereira A, Silva R, Rondinelli E, von Krüger W, Martins O, Baldani JI, Ferreira PCG (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal 5. BMC Genomics 10:450

    Article  Google Scholar 

  20. Ananthalakshmy VK, Gunasekaran P (1999) Optimization of levan production by Zymomonas mobilis. Braz Arch Biol Technol 42:291–298

    CAS  Google Scholar 

  21. Viikari L (1984) Formation of levan and sorbitol from sucrose by Zymomonas mobilis. Appl Microbiol Biotechnol 19:252–255

    Article  CAS  Google Scholar 

  22. Sanderson GR (1996) Gums and their use in food systems. Food Technol 50:81–84

    Google Scholar 

  23. Barcenas ME, De la O-Keller J, Rosell CM (2009) Influence of different hydrocolloids on major wheat dough components (gluten and starch). J Food Eng 94:241–247

    Article  CAS  Google Scholar 

  24. Brandt MJ, Roth K, Hammes WP (2003) Effect of an exopolysaccharide produced by Lactobacillus sanfranciscensis LTH1729 on dough and bread quality. In: de Vuyst L (ed) Sourdough, from fundamentals to applications. Vrije Universiteit Brussel (VUB), Brussels, p 80

    Google Scholar 

  25. Kaditzky SB (2008) Sucrose metabolism in lactobacilli and bifidobacteria. Doctoral thesis, Technische Universitaüt München, p 69

  26. Van Geel-Schutten GH (2006) Use of a polysaccharide as bread improver. Patent no. WO 2006/062410 A1

  27. Rosell CM, Rojas JA, Benedito de Barber C (2001) Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocoll 15:75–81

    Article  CAS  Google Scholar 

  28. Guarda A, Rosell CM, Benedito C, Galotto MJ (2004) Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocoll 18:241–247

    Article  CAS  Google Scholar 

  29. Rojas JA, Rosell CM, Benedito C (1999) Pasting properties of different wheat flour-hydrocolloid systems. Food Hydrocoll 13:27–33

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi F. Vogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakob, F., Steger, S. & Vogel, R.F. Influence of novel fructans produced by selected acetic acid bacteria on the volume and texture of wheat breads. Eur Food Res Technol 234, 493–499 (2012). https://doi.org/10.1007/s00217-011-1658-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1658-7

Keywords

Navigation