Skip to main content
Log in

Thermal Inactivation kinetics of acid phosphatase (ACP) in cod (Gadus morhua)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Thermal inactivation of acid phosphatase (ACP) in muscle extracts of farmed cod was measured in the range of 55–67.5 °C obtaining D 60=6.78±0.10 min and z=6.37±0.09 °C. These data show that ACP is less thermo-stable than heat-resistant pathogen micro-organisms (e.g. Listeria monocytogenes) and therefore could be inactivated in heat-preserved fish products. As a consequence, residual ACP activity is not recommended as a quantitative intrinsic time temperature indicator (TTI) relative to pathogenic micro-organisms, based on these preliminary studies. Hence, ACP residual activity is probably not a shelf life limiting factor of cod products but might have its potential as an indirect monitor of quality parameters during thermal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lund D (2003) J Food Eng 56:113–117

    Article  Google Scholar 

  2. Adams JB (1991) Int J Food Sci Technol 26:1–20

    CAS  Google Scholar 

  3. European Commission (1997) In: Martens T, Luchetti A (eds) Harmonization of safety criteria for minimally processed foods. Inventory report FAIR concerted actions, Brussels, Belgium, FAIR CT96-1020, pp 1–45

  4. Skåra T, Rosnes JT, Sivertsvik M (2002) Food Technol Int 2:75–76

    Google Scholar 

  5. Johansson L, Ruderus H, Beilby RI (1992) Home Econ Res J 21:192–205

    Google Scholar 

  6. ECFF (European Chilled Food Federation) (1996) Guideline for the hygienic manufacture of chilled foods. Chilled Food Association, London, pp 1–70

    Google Scholar 

  7. Van Loey A, Hendrickx M, De Cordt S, Haentjens T, Tobback P (1996) Trends Food Sci Technol 7:16–25

    Article  CAS  Google Scholar 

  8. Jensen KN, Jorgensen BM (2003) Lebensmittel-Wissenschaft und Techn 36:807–812

    Article  CAS  Google Scholar 

  9. Ofstad R, Kidman S, Myklebust R, Hermansson AM (1993) Food Struct 12:163–174

    Google Scholar 

  10. Claeys WL, Van Loey AM, Hendrickx ME (2002) J Dairy Res 69:541–553

    Article  CAS  Google Scholar 

  11. Claeys WL, Van Loey AM, Hendrickx ME (2002) Trends Food Sci Technol 13:293–311

    Article  CAS  Google Scholar 

  12. Claeys WL, Ludikhuyze LR, Van Loey AM, Hendrickx ME (2001) J Dairy Res 68:95–107

    Article  CAS  Google Scholar 

  13. Eckner KF (1992) J Food Prot 55:960–963

    CAS  Google Scholar 

  14. Castro I, Macedo B, Teixeira JT, Vicente AA (2004) J Food Sci 69:696–701

    Article  Google Scholar 

  15. Price NC, Stevens L (1982) Clinical aspects of enzymology. In: Price NC, Stevens L (eds) Fundamentals of enzymology. Oxford Science Publications, Oxford, UK, pp 386–410.

    Google Scholar 

  16. Hoehamer CF, Mazur CS, Wolfe NL (2005) J Agric Food Chem 53:90–97

    Article  CAS  Google Scholar 

  17. Kuda T, Tsuda N, Yano T (2004) Food Chem 88:543–548

    Article  CAS  Google Scholar 

  18. Kuda T, Matsumoto C, Yano T (2002) Food Chem 76:443–447

    Article  CAS  Google Scholar 

  19. Cvancara VA, Huang W (1978) Comp Biochem Phys B: Biochem Mol Biol 60:221–224

    Article  CAS  Google Scholar 

  20. Goldemberg AL, Paron L, Crupkin M (1987) Comp Biochem Phys A: Physiol 87:845–849

    Article  CAS  Google Scholar 

  21. Gill TA (1992) In: Huss HH et al. (eds) Quality assurance in the fish industry. Elsevier Science Publisher B.V., Amsterdam, NL, pp 377–387

  22. Rocco MR (1990) J Food Prot 53:588–591

    CAS  Google Scholar 

  23. Davis CE, Townsend WE (1994) J Food Prot 57:1094–1097

    CAS  Google Scholar 

  24. Körmendy L, Zsarnoczay G, Mihalyi V (1992) Food Chem 44:367–375

    Article  Google Scholar 

  25. Orta-Ramirez A, Price JF, Hsu YC, Veeramuthu GJ, Cherry-Merritt JS, Smith DM (1997) J Food Prot 60:471–475

    CAS  Google Scholar 

  26. Varmbo G, Skåra T, Olsen SO, Sivertsvik M (2001) Annales Societatis Scientiarum Færoensis Supplementum XXVIII. Torshavn, Faroe Islands, pp 137–143

  27. AOAC - Association of Official Analytical Chemists (1994) Official methods no. 977.14. Nitrogen in meat (Kjeldahl method), vol 16. AOAC International, Washington DC, pp 7–8

    Google Scholar 

  28. Hendrickx M, Maesmans G, DeCordt S, Noronha J, VanLoey A, Tobback P (1995) Crit Rev Food Sci Nutr 35:231–262

    Article  CAS  Google Scholar 

  29. Van Loey A, Indrawati, Smouth C, Hendrickx, M (2003) In: Whitaker J, Voragen F, Wong D, Beldman G (eds) Inactivation of enzymes – from experimental design to kinetic modeling. Marcel Dekker Inc., New York, pp 49–58

  30. Ben Embarek PK, Huss HH (1993) Int J Food Microbiol 20:85–95

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is part of the “Strategic Institute Program (SIP) – Process development for convenience products from farmed cod (CONCOD) (NFR project no. 158929/I10; 2004-2007).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnsen, S.O., Skipnes, D., Skåra, T. et al. Thermal Inactivation kinetics of acid phosphatase (ACP) in cod (Gadus morhua). Eur Food Res Technol 224, 315–320 (2007). https://doi.org/10.1007/s00217-006-0433-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0433-7

Keywords

Navigation