Skip to main content
Log in

Revealing the composition of organic materials in polychrome works of art: the role of mass spectrometry-based techniques

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The most recent advances in the identification and determination of organic constituents in paintings and other polychrome objects using mass spectrometry (MS)-based techniques are reviewed. The latest achievements in gas chromatography (GC)-MS and pyrolysis (Py-) GC-MS are mainly related to sample pretreatment protocols and to the employment of double-shot or laser desorption pyrolysis, respectively. MS techniques based on soft ionization methods such as matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) are discussed. So far, MALDI and ESI MS have been mainly used in the characterization of proteinaceous materials, but further applications are definitely emerging, e.g., in the fields of lipids, resins, and organic colorants analysis. Chemical imaging by time-of-flight secondary ion mass spectrometry (TOF SIMS), formerly applied to the detection and localization of lipid binders and inorganic materials, has been recently extended to proteins. Finally, the potential of niche techniques such as direct temperature resolved mass spectrometry (DTMS) and direct analysis in real time (DART) MS are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

BSTFA:

Bis(trimethylsilyl)trifluoroacetamide

CI:

Chemical ionization

DAG:

Diacylglyceride

DART:

Direct analysis in real time

DEMS:

Direct exposure mass spectrometry

DTMS:

Direct temperature resolved mass spectrometry

DTPA:

Diethylenetriamine-N,N,N′,N”,N”’ pentaacetic acid

DTT:

Dithiothreitol

EI:

Electron impact

ESI:

Electrospray ionization

FTICR:

Fourier transform ion cyclotron resonance

FTIR:

Fourier transform infrared

GA:

Graphite-assisted

GC:

Gas chromatography

HMDS:

Hexamethyldisilazane

HP:

High performance

IAA:

Iodoacetamide

ICP:

Inductively coupled plasma

LaPy:

Laser pyrolysis

LC:

Liquid chromatography

LDA:

Linear discriminant analysis

LDI:

Laser desorption ionization

LIT:

Linear ion-trap

LMIG:

Liquid metal ion guns

MALDI:

Matrix assisted laser desorption ionization

MaSC:

Users’ Group for Mass Spectrometry and Chromatography

MMD:

Molar mass distribution

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

OM:

Optical microscopy

P:

Palmitic acid

PC:

Phosphatidylcholine

PCA:

Principal component analysis

PEG:

Poly(ethylene glycol)

PhTMAH:

Phenyltrimethylammonium hydroxide

PL:

Phospholipid

PMF:

Peptide mass fingerprint

Py:

Pyrolysis

Q:

Quadrupole

S:

Stearic acid

SDS:

Sodium dodecyl sulfate

SEM:

Scanning electron microscopy

SIC:

Selected ion current

SIMCA:

Soft independent modelling of class analogy

SIMS:

Secondary ion mass spectrometry

SPME:

Solid phase micro-extraction

TAG:

Triacylglycerol

TD:

Thermal desorption

TFA:

Trifluoroacetic acid

TGA:

Thermogravimetric analysis

THM:

Thermally assisted hydrolysis and methylation

TIC:

Total ion current

TMAH:

Tetramethylammonium hydroxide

TMTFTH:

(m-trifluoromethylphenyl) trimethylammonium hydroxide or trimethyl[α,α,α-trifluoro-m-tolyl]ammonium hydroxide

TOF:

Time of flight

TQ:

Triple quadrupole

UV:

Ultraviolet

References

  1. Theophilus. In: Dodwell CR, editor. De diversis artibus. Oxford: Oxford University Press; 1987.

    Google Scholar 

  2. Cennino D’Andrea Cennini. The Craftsman’s Handbook “Il libro dell’arte”. Thompson DV Jr., translator (1960) Dover Publications: New York

  3. Crook J, Learner T. The impact of modern paints. London: Tate Gallery publishing; 2000.

    Google Scholar 

  4. Colombini MP, Modugno F. Characterization of proteinaceous binders in artistic paintings by chromatographic techniques. J Sep Sci. 2004;27:147–60.

    Article  CAS  Google Scholar 

  5. Colombini MP, Modugno F (Eds). Organic mass spectrometry in art and archaeology. Wiley: New York. 2009.

  6. Doménech-Carbó MT. Novel analytical methods for characterizing binding media and protective coatings in artworks. Anal Chim Acta. 2008;621:109–39.

    Article  CAS  Google Scholar 

  7. Advanced techniques in art conservation. Brunetti BG, Sgamellotti A, Clark AJ (Eds) (2010) Acc Chem Res 43,693–944

  8. Analytical Chemistry for Cultural Heritage (2016) Topics Curr Chem 374

  9. Dallongeville S, Garnier N, Rolando C, Tokarski C. Proteins in art, archaeology, and paleontology: from detection to identification. Chem Rev. 2016;116:2–79.

    Article  CAS  Google Scholar 

  10. Vinciguerra R, De Chiaro A, Pucci P, Marino G, Birolo L. Proteomic strategies for cultural heritage: from bones to paintings. Microchem J. 2016;126:341–8.

    Article  CAS  Google Scholar 

  11. Marinach C, Papillon MC, Pepe C. Identification of binding media in works of art by gas chromatography-mass spectrometry. J Cult Herit. 2004;5:231–40.

    Article  Google Scholar 

  12. Bleton J, Tchapla A. SPME/GC-MS in the Characterisation of Terpenic Resins. In: Colombini MP, Modugno F, editors. Organic mass spectrometry in art and archaeology. New York: Wiley; 2009. p. 261–302.

    Chapter  Google Scholar 

  13. Regert M, Alexandre V, Thomas N, Lattuati Derieux A. Molecular characterization of birch bark tar by headspace solid phase microextraction gas chromatography mass spectrometry: a new way for identifying archaeological glues. J Chromatogr A. 2006;1101:245–53.

    Article  CAS  Google Scholar 

  14. Hamm S, Bleton J, Connan J, Tchapla A. A chemical investigation by headspace SPME and GCMS of volatile and semivolatile terpenes in various olibanum samples. Phytochemistry. 2005;66:1499–514.

    Article  CAS  Google Scholar 

  15. Lattuati-Derieux A, Bonnassies Termes S, Lavédrine B. Identification of volatile organic compounds emitted by a naturally aged book using solid phase microextraction/gas chromatography/mass spectrometry. J Chromatogr A. 2004;1026:9–18.

    Article  CAS  Google Scholar 

  16. Lattuati-Derieux A, Egasse C, Thao-Heu S, Balcar N, Barabant G, Lavédrine B. What do plastics emit? HS-SPME-GC/MS analyses of new standard plastics and plastic objects in museum collections. J Cult Herit. 2013;14:238–47.

    Article  Google Scholar 

  17. Lattuati-Derieux A, Thao S, Langlois J, Regert M. First results on headspace-solid phase microextraction-gas chromatography/mass spectrometry of volatile organic compounds emitted by wax objects in museums. J Chromatogr A. 2008;1187:239–49.

    Article  CAS  Google Scholar 

  18. Desauziers V, Bourdin D, Mocho P, Plaisance H. Innovative tools and modeling methodology for impact prediction and assessment of the contribution of materials on indoor air quality. Herit Sci. 2015;3:28.

    Article  CAS  Google Scholar 

  19. Godoi AFL, van Vaeck L, van Grieken R. Use of solid-phase microextraction for the detection of acetic acid by ion-trap gas chromatography-mass spectrometry and application to indoor levels in museums. J Chromatogr A. 2005;1067:331–6.

    Article  CAS  Google Scholar 

  20. Colombini MP, Modugno F, Francesconi S, Giacomelli M. Characterization of proteinaceous binders and drying oils in wall painting samples by gas chromatography-mass spectrometry. J Chromatogr A. 1999;846:113–24.

    Article  CAS  Google Scholar 

  21. Gimeno-Adelantado JV, Mateo-Castro R, Doménech-Carbó MT, Bosch-Reig F, Doménech-Carbó A, De la Cruz-Canuzares J, et al. Analytical study of proteinaceous binding media in works of art by gas chromatography using alkyl chloroformates as derivatizing agents. Talanta. 2002;56:71–7.

    Article  CAS  Google Scholar 

  22. Bersani D, Berzioli M, Caglio S, Casoli A, Lottici PP, Medeghini L, et al. An integrated multi-analytical approach to the study of the dome wall paintings by Correggio in Parma cathedral. Microchem J. 2014;114:80–8.

    Article  CAS  Google Scholar 

  23. Sutherland K. Derivatization using m-(trifluoromethyl)phenyltrimethylammonium hydroxide of organic materials in artworks for analysis by gas chromatography-mass spectrometry: Unusual reaction products with alcohols. J Chromatogr A. 2007;149:30–7.

    Article  CAS  Google Scholar 

  24. Manzano E, Rodriguez-Simón LR, Navas N, Checa-Moreno R, Romero-Gámez M, Capitan-Vallvey LF. Study of the GC–MS determination of the palmitic–stearic acid ratio for the characterisation of drying oil in painting: La Encarnación by Alonso Cano as a case study. Talanta. 2011;84:1148–54.

    Article  CAS  Google Scholar 

  25. Llorent-Martínez EJ, Domínguez-Vidal A, Rubio-Domene R, Pascual-Reguera MI, Ruiz-Medina A, Ayora-Cañada MJ. Identification of lipidic binding media in plasterwork decorations from the Alhambra using GC–MS and chemometrics: Influence of pigments and aging. Microchem J. 2014;115:11–8.

    Article  CAS  Google Scholar 

  26. Piccirillo A, Scalarone D, Chiantore O. Comparison between off-line and on-line derivatisation methods in the characterisation of siccative oils in paint media. J Anal Appl Pyrol. 2005;74:33–8.

    Article  CAS  Google Scholar 

  27. Erhardt D, Tumosa CS, Mecklenburg MF. Long-term chemical and physical processes in oil paint films. Stud Conserv. 2005;50:143–50.

    Article  Google Scholar 

  28. Bonaduce I, Di Girolamo F, Corsi I, Degano I, Tinè MR, Colombini MP. Terpenoid oligomers of dammar resin. J Nat Prod. 2016;79:845–56.

    Article  CAS  Google Scholar 

  29. Baumer U, Dietemann P, Koller J. Identification of resinous materials on 16th and 17th century reverse-glass objects by gas chromatography/mass spectrometry. Int J Mass Spectrom. 2009;284:131–41.

    Article  CAS  Google Scholar 

  30. Bonaduce I, Brecoulaki H, Colombini MP, Lluveras A, Restivo V, Ribechini E. Gas chromatographic–mass spectrometric characterization of plant gums in samples from painted works of art. J Chromatogr A. 2007;1175:275–82.

    Article  CAS  Google Scholar 

  31. Lluveras-Tenorio A, Mazurek J, Restivo A, Colombini MP, Bonaduce I. The development of a new analytical model for the identification of saccharide binders in paint samples. Plos One. 2012;7(11), e49383.

    Article  CAS  Google Scholar 

  32. Lluveras-Tenorio A, Mazurek J, Restivo A, Colombini MP, Bonaduce I. Analysis of plant gums and saccharide materials in paint samples: comparison of GC-MS analytical procedures and databases. Chem Centr J. 2012;6:115.

    Article  CAS  Google Scholar 

  33. Wang Z-F, He Y, Huang L-J. An alternative method for the rapid synthesis of partially O-methylated alditol acetate standards for GC-MS analysis of carbohydrates. Carbohydr Res. 2007;342:2149–51.

    Article  CAS  Google Scholar 

  34. Pitthard V, Griesser M, Stanek S, Bayerova T. Study of complex organic binding media systems on artworks applying GC-MS analysis: selected examples from the Kunsthistorisches Museum, Vienna. Macromol Symp. 2006;238:37–45.

    Article  CAS  Google Scholar 

  35. Lluveras A, Bonaduce I, Andreotti A, Colombini MP. GC/MS Analytical procedure for the characterization of glycerolipids, natural waxes, terpenoid resins, proteinaceous and polysaccharide materials in the same paint microsample avoiding interferences from inorganic media. Anal Chem. 2010;81:376–86.

    Article  CAS  Google Scholar 

  36. Amadori ML, Poldi G, Barcelli S, Baraldi P, Berzioli M, Casoli A, et al. Lorenzo Lotto’s painting materials: An integrated diagnostic approach. Spectrochim Acta A. 2016;164:110–22.

    Article  CAS  Google Scholar 

  37. Doménech-Carbó MT, Casas-Catalán MJ, Doménech-Carbó A, Mateo-Castro R, Gimeno-Adelantado JV, Bosch-Reig F. Analytical study of canvas painting collection from the Basilica de la Virgen de los Desamparados using SEM/EDX, FTIR, GC, and electrochemical techniques. Fresenius J Anal Chem. 2001;369:571–5.

    Article  Google Scholar 

  38. van Keulen H. Gas chromatography/mass spectrometry methods applied for the analysis of a Round Robin sample containing materials present in samples of works of art. Int J Mass Spectrom. 2009;284:162–9.

    Article  CAS  Google Scholar 

  39. Wampler TP, editor. Applied Pyrolysis Handbook. USA: CRC Press; 2007.

    Google Scholar 

  40. Tsuge S, Ohtani H, Watanabe C. Pyrolysis-GC/MS data book of synthetic polymers. Pyrograms, thermograms, and MS of pyrolyzates. UK: Elsevier; 2011.

    Google Scholar 

  41. Learner T. Analysis of modern paints. Los Angeles: The Getty Conservation Institute; 2004.

    Google Scholar 

  42. Peris-Vicente J, Baumer U, Stege H, Lutzenberger K, Gimeno Adelantado JV. Characterization of commercial synthetic resins by pyrolysis-gas chromatography/mass spectrometry: application to modern art and conservation. Anal Chem. 2009;81:3180–7.

    Article  CAS  Google Scholar 

  43. Doménech-Carbó MT, Bitossi G, Osete-Cortina L, Yusa-Marco DJ. Study of aging of ketone resins used as picture varnishes by pyrolysis-silylation-gas chromatography-mass spectrometry. J Anal Appl Pyrol. 2009;85:470–9.

    Article  CAS  Google Scholar 

  44. Ploeger R, Scalarone D, Chiantore O. The characterization of commercial artists’ alkyd paints. J Cult Herit. 2008;9:412–9.

    Article  Google Scholar 

  45. Ghelardi E, Degano I, Colombini MP, Mazurek J, Schilling M, Learner T. Py-GC/MS applied to the analysis of synthetic organic pigments: characterization and identification in paint samples. Anal Bioanal Chem. 2015;407:1415–31.

    Article  CAS  Google Scholar 

  46. Germinario G, van der Werf ID, Sabbatini L. Pyrolysis gas chromatography mass spectrometry of two green phthalocyanine pigments and their identification in paint systems. J Anal Appl Pyrol. 2015;115:175–83.

    Article  CAS  Google Scholar 

  47. Russell J, Singer BW, Perry JJ, Bacon A. The identification of synthetic organic pigments in modern paints and modern paintings using pyrolysis-gas chromatography-mass spectrometry. Anal Bioanal Chem. 2011;400:1473–91.

    Article  CAS  Google Scholar 

  48. Cappitelli F, Koussiaki F. THM-GCMS and FTIR for the investigation of paints in Picasso’s Still Life, Weeping Woman and Nude Woman in a Red Armchair from the Tate Collection, London. J Anal Appl Pyrol. 2006;75:200–4.

    Article  CAS  Google Scholar 

  49. Bonaduce I, Andreotti A. Py-GC/MS of organic paint binders. In: Colombini MP, Modugno F, editors. Organic mass spectrometry in art and archaeology. New York: Wiley; 2009. p. 303–26.

    Chapter  Google Scholar 

  50. Scalarone D, Chiantore O. Py-GC/MS of natural and synthetic resins. In: Colombini MP, Modugno F, editors. Organic mass spectrometry in art and archaeology pp. New York: Wiley; 2009. p. 327–61.

    Chapter  Google Scholar 

  51. Watts S, de la Rie R. GCMS analysis of triterpenoid resins: in situ derivatization procedures using quaternary ammonium hydroxides. Stud Conserv. 2002;47:257–72.

    CAS  Google Scholar 

  52. La Nasa J, Zanaboni M, Uldanck D, Degano I, Modugno F, Kutzke H, et al. Topalova-Casadiego B, Colombini MP. Novel application of liquid chromatography/mass spectrometry for the characterization of drying oils in art: elucidation on the composition of original paint materials used by Edvard Munch (1863–1944). Anal Chim Acta. 2015;896:177–89.

    Article  CAS  Google Scholar 

  53. Doménech-Carbó MT, Bitossi G, Osete-Cortina L, De la Cruz-Cañizares J. Characterization of polyvinyl resins used as binding media in paintings by pyrolysis-silylation-gas chromatography-mass spectrometry. Anal Bioanal Chem. 2008;391:1371–9.

    Article  CAS  Google Scholar 

  54. Osete-Cortina L, Doménech-Carbó MT. Characterization of acrylic resins used for restoration of artworks by pyrolysis-silylation-gas chromatography/mass spectrometry with hexamethyldisilazane. J Chromatogr A. 2006;1127:228–36.

    Article  CAS  Google Scholar 

  55. Bonaduce I, Colombini MP. Characterization of beeswax in works of art by gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry procedures. J Chromatogr A. 2004;1028:297–306.

    Article  CAS  Google Scholar 

  56. Chiantore O, Riedo C, Scalarone D. Gas chromatography-mass spectrometric analysis of products from on-line pyrolysis/silylation of plant gums used as binding media. Int J Mass Spectrom. 2009;284:35–41.

    Article  CAS  Google Scholar 

  57. Chiavari G, Fabbri D, Prati S. Effect of pigments on the analysis of fatty acids in siccative oils by pyrolysis methylation and silylation. J Anal Appl Pyrol. 2005;74:39–44.

    Article  CAS  Google Scholar 

  58. Sutherland K, del Río JC. Characterization and discrimination of various types of lac resin using gas chromatography mass spectrometry techniques with quaternary ammonium reagents. J Chromatogr A. 2014;1338:149–63.

    Article  CAS  Google Scholar 

  59. Prati S, Smith S, Chiavari G. Characterization of siccative oils, resins and pigments in art works by thermochemolysis coupled to thermal desorption and pyrolysis GC and GC-MS. Chromatographia. 2004;59:227–31.

    CAS  Google Scholar 

  60. Pintus V, Schreiner M. Characterization and identification of acrylic binding media: influence of UV light on the aging process. Anal Bioanal Chem. 2011;399:2961–76.

    Article  CAS  Google Scholar 

  61. Nakamura S, Takino M, Daishima S. Analysis of waterborne paints by gas chromatography–mass spectrometry with a temperature-programmable pyrolyzer. J Chromatogr A. 2001;912:329–34.

    Article  CAS  Google Scholar 

  62. Pintus V, Wei S, Schreiner M. UV aging studies: evaluation of lightfastness declarations of commercial acrylic paints. Anal Bioanal Chem. 2012;402:1567–84.

    Article  CAS  Google Scholar 

  63. Wei S, Pintus V, Schreiner M. A comparison study of alkyd resin used in art works by Py-GC/MS andGC/MS: the influence of aging. J Anal Appl Pyrol. 2013;104:441–7.

    Article  CAS  Google Scholar 

  64. Izzo FC, Vitale V, Fabbro C, van Keulen H. Multi-analytical investigation on felt-tip pen inks: Formulation and preliminary photo-degradation study. Microchem J. 2016;124:919–28.

    Article  CAS  Google Scholar 

  65. Greenwood PF, George SC, Hall K. Applications of laser micropyrolysis-gas chromatography-mass spectrometry. Org Geochem. 1998;29:1075–89.

    Article  CAS  Google Scholar 

  66. Prati S, Fuentes D, Sciutto G, Mazzeo R. The use of laser pyrolysis-GC-MS for the analysis of paint cross sections. J Anal Appl Pyrol. 2014;105:327–34.

    Article  CAS  Google Scholar 

  67. Spoto G, Grasso G. Spatially resolved mass spectrometry in the study of art and archaeological objects. Trends Anal Chem. 2011;30:856–63.

    Article  CAS  Google Scholar 

  68. Mas M, Jorge A, Gavilán B, Solís M, Parra E, Pérez P-P. Minateda rock shelters (Albacete) and post-palaeolithic art of the Mediterranean Basin in Spain: pigments, surfaces, and patinas. J Archaeol. 2013;40:4635–47.

    CAS  Google Scholar 

  69. Brecoulaki H, Andreotti A, Bonaduce I, Colombini MP, Lluveras A. Characterization of organic media in the wall-paintings of the “Palace of Nestor” at Pylos, Greece: evidence for secco painting techniques in the Bronze Age. J Archaeol Sci. 2012;39:2866–76.

    Article  CAS  Google Scholar 

  70. Amadori ML, Barcelli S, Poldi G, Ferrucci F, Andreotti A, Baraldi P, et al. Invasive and noninvasive analyses for knowledge and conservation of Roman wall paintings of the Villa of the Papyri in Herculaneum. Microchem J. 2015;118:183–92.

    Article  CAS  Google Scholar 

  71. Corso G, Gelzo M, Sanges C, Chambery A, Di Maro A, Severino V, et al. Polar and nonpolar organic binder characterization in Pompeian wall paintings: comparison to a simulated painting mimicking an “a secco” technique. Anal Bioanal Chem. 2012;402:3011–6.

    Article  CAS  Google Scholar 

  72. Clementi C, Ciocan V, Vagnini M, Doherty B, Laurenzi Tabasso M, Conti C, et al. Noninvasive and micro-destructive investigation of the Domus Aurea wall painting decorations. Anal Bioanal Chem. 2011;401:1815–26.

    Article  CAS  Google Scholar 

  73. Tamburini D, Łucejko JJ, Modugno F, Colombini MP, Pallecchi P, Giachi G. Microscopic techniques (LM, SEM) and a multi-analytical approach (EDX, FTIR, GC/MS, Py-GC/MS) to characterize the decoration technique of the wooden ceiling of the House of the Telephus Relief in Herculaneum (Italy). Microchem J. 2014;116:7–14.

    Article  CAS  Google Scholar 

  74. Stratis JA, Makarona C, Lazidou D, Gómez Sánchez E, Koutsoudis A, Pamplona M, et al. Enhancing the examination workflow for Byzantine icons: Implementation of information technology tools in a traditional context. J Cult Herit. 2014;15:85–91.

    Article  Google Scholar 

  75. Valianou L, Wei S, Mubarak MS, Farmakalidis H, Rosenberg E, Stassinopoulos S, et al. Identification of organic materials in icons of the Cretan School of Iconography. J Archaeol Sci. 2011;38:246–54.

    Article  Google Scholar 

  76. Kalinina KB, Bonaduce I, Colombini MP, Artemieva IS. An analytical investigation of the painting technique of Italian Renaissance master Lorenzo Lotto. J Cult Herit. 2012;13:259–74.

    Article  Google Scholar 

  77. Serefidou M, Bracci S, Tapete D, Andreotti A, Biondi L, Colombini MP, et al. Microchemical and microscopic characterization of the pictorial quality of egg-tempera polyptych, late 14th century, Florence, Italy. Microchem J. 2016;127:187–98.

    Article  CAS  Google Scholar 

  78. Izzo FC, Ferriani B, van den Berg KJ, van Keulen H, Zendri E. 20th Century artists’ oil paints: the case of the Olii by Lucio Fontana. J Cult Herit. 2014;15:557–63.

    Article  Google Scholar 

  79. Lluveras-Tenorio A, Andreotti A, Bonaduce I, Boularand S, Cotte M, Roqué J, et al. Mass Spectrometric and Synchrotron Radiation based techniques for the identification and distribution of painting materials in samples from paints of Josep Maria Sert. Chem Central J. 2012;6:45.

    Article  CAS  Google Scholar 

  80. Orecchio S, Indelicato R, Barreca S. Determination of selected phthalates by gas chromatography–mass spectrometry in mural paintings from Palermo (Italy). Microchem J. 2014;114:187–91.

    Article  CAS  Google Scholar 

  81. Barreca S, Indelicato R, Orecchio S, Pace A. Photodegradation of selected phthalates on mural painting surfaces under UV light irradiation. Microchem J. 2014;114:192–6.

    Article  CAS  Google Scholar 

  82. Romero-Noguera J, Martín-Sánchez I, Doménech-Carbó MT, Osete-Cortina L, López-Miras MM, Bolívar-Galiano F. Analytical characterization of the biodeterioration of diterpenoid labdanic varnishes used in pictorial techniques: Sandarac and Manila copal. Int Biodet Biodegrad. 2014;90:99–105.

    Article  CAS  Google Scholar 

  83. Fuster-López L, Izzo FC, Piovesan M, Yusá-Marco DJ, Sperni L, Zendri E. Study of the chemical composition and the mechanical behavior of 20th century commercial artists’ oil paints containing manganese-based pigments. Microchem J. 2016;124:962–73.

    Article  CAS  Google Scholar 

  84. D'Elboux Bernardino N, Puglieri TS, de Faria DLA. Effect of MnO2 and α-Fe2O3 on organic binders degradation investigated by Raman spectroscopy. Vibr Spectrosc. 2014;70:70–7.

    Article  CAS  Google Scholar 

  85. Puglieri TS, Lavezzo AS, dos Santos IFS, de Faria DLA. Investigation on the hazing of a Brazilian contemporary painting. Spectr Chim Acta A. 2016;159:117–22.

    Article  CAS  Google Scholar 

  86. La Nasa J, Degano I, Modugno F, Colombini MP. Effects of acetic acid vapor on the aging of alkyd paint layers: multianalytical approach for the evaluation of the degradation processes. Polym Degrad Stab. 2014;105:257–64.

    Article  CAS  Google Scholar 

  87. Ghelardi E, Degano I, Colombini MP, Mazurek J, Schilling M, Khanjian H, et al. A multi-analytical study on the photochemical degradation of synthetic organic pigments. Dyes Pigments. 2015;123:396–403.

    Article  CAS  Google Scholar 

  88. Bonaduce I, Carlyle L, Colombini MP, Duce C, Ferrari C, Ribechini E, et al. New insights into the aging of linseed oil paint binder: a qualitative and quantitative analytical study. PLoS One. 2012;7(11), e49333.

    Article  CAS  Google Scholar 

  89. Hynek R, Kuckova S, Hradilova J, Kodicek M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a tool for fast identification of protein binders in color layers of paintings. Rapid Commun Mass Spectrom. 2004;18:1896–900.

    Article  CAS  Google Scholar 

  90. Kuckova S, Nemec I, Hynek R, Hradilova J, Grygar T. Analysis of organic coloring and binding components in color layer of art works. Anal Bioanal Chem. 2005;382:275–82.

    Article  CAS  Google Scholar 

  91. Tokarski C, Martin E, Rolando C, Cren-Olivé C. Identification of proteins in renaissance paintings by proteomics. Anal Chem. 2006;78:1494–502.

    Article  CAS  Google Scholar 

  92. Kuckova S, Hynek R, Kodicek M. Identification of proteinaceous binders used in artworks by MALDI-TOF mass spectrometry. Anal Bioanal Chem. 2007;388:201–6.

    Article  CAS  Google Scholar 

  93. Fremout W, Kuckova S, Crhova M, Sanyova J, Saverwyns S, Hynek R, Kodicek M, Vandenabeele P, Moens L (2011) Classification of protein binders in artist’s paints by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: an evaluation of principal component analysis (PCA) and soft independent modelling of class analogy (SIMCA). Rapid Commun Mass Spectrom 25:1631−40.

  94. Kirby DP, Buckley M, Promise E, Trauger SA, Holdcraft TR. Identification of collagen-based materials in cultural heritage. Analyst. 2013;138:4849–58.

    Article  CAS  Google Scholar 

  95. Tripković T, Charvy C, Alves S, Lolić A, Baošić RM, Nikolić-Mandić SD, et al. Identification of protein binders in artworks by MALDI-TOF/TOF tandem mass spectrometry. Talanta. 2013;113:49–61.

    Article  CAS  Google Scholar 

  96. Romero-Pastor J, Navas N, Kuckova S, Rodríguez-Navarro A, Cardell C. Collagen-based proteinaceous binder-pigment interaction study under UV aging conditions by MALDI-TOF-MS and principal component analysis. J Mass Spectrom. 2012;47:322–30.

    Article  CAS  Google Scholar 

  97. Araki N, Moini M. Age estimation of museum wool textiles from Ovis aries using deamidation rates utilizing matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2011;25:3396–400.

    Article  CAS  Google Scholar 

  98. Kuckova S, Sandu ICA, Crhova M, Hynek R, Fogas I, Schafer S. Protein identification and localization using mass spectrometry and staining tests in cross-sections of polychrome samples. J Cult Herit. 2013;14:31–7.

    Article  Google Scholar 

  99. Kuckova S, Sandu ICA, Crhova M, Hynek R, Fogas I, Muralha VS, et al. Complementary cross-section based protocol of investigation of polychrome samples of a 16th century Moravian sculpture by optical, vibrational, and mass spectrometric techniques. Microchem J. 2013;110:538–44.

    Article  CAS  Google Scholar 

  100. van der Werf ID, Calvano CD, Laviano R, Simonetti A, Sabbatini L. Multi-technique chemical characterization of a 12th century–13th-century painted Crucifix. Microchem J. 2013;106:87–94.

    Article  CAS  Google Scholar 

  101. van den Brink OF, Boon JJ, O’Connor PB, Duursma MC, Heeren RMA. Matrix-assisted laser desorption/ionization Fourier transform mass spectrometric analysis of oxygenated triglycerides and phosphatidylcholines in egg tempera paint dosimeters used for environmental monitoring of museum display conditions. J Mass Spectrom. 2001;36:479–92.

    Article  Google Scholar 

  102. van den Berg JDJ, Vermist ND, Carlyle L, Holcapek M, Boon JJ. Effects of traditional processing methods of linseed oil on the composition of its triacylglycerols. J Sep Sci. 2004;27:181–99.

    Article  CAS  Google Scholar 

  103. Scalarone D, Duursma MC, Boon JJ, Chiantore OJ. MALDI-TOF mass spectrometry on cellulosic surfaces of fresh and photo-aged di- and triterpenoid varnish resins. J Mass Spectrom. 2005;40:1527–35.

    Article  CAS  Google Scholar 

  104. Hoogland FG, Boon JJ. Development of MALDI-MS and nano-ESI-MS methodology for the full identification of poly(ethylene glycol) additives in artists acrylic paints. Int J Mass Spectrom. 2009;284:66–71.

    Article  CAS  Google Scholar 

  105. Calvano CD, van der Werf ID, Palmisano F, Sabbatini L. Fingerprinting of egg and oil binders in painted artworks by matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of lipid oxidation by-products. Anal Bioanal Chem. 2011;400:2229–40.

    Article  CAS  Google Scholar 

  106. van der Werf ID, Calvano CD, Palmisano F, Sabbatini L. A simple protocol for Matrix Assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of lipids and proteins in single microsamples of paintings. Anal Chim Acta. 2012;718:1–710.

    Article  CAS  Google Scholar 

  107. Calvano CD, van der Werf ID, Palmisano F, Sabbatini L. Identification of lipid- and protein-based binders in paintings by direct on-plate wet chemistry and matrix-assisted laser desorption ionization mass spectrometry. Anal Bioanal Chem. 2015;407:1–8.

    Article  CAS  Google Scholar 

  108. Li X, Wilm M, Franz T. Silicone/graphite coating for on-target desalting and improved peptide mapping performance of matrix-assisted laser desorption/ionization-mass spectrometry targets in proteomic experiments. Proteomics. 2005;5:1460–71.

    Article  CAS  Google Scholar 

  109. Dietemann P, Herm C. GALDI-MS applied to characterize natural varnishes and binders. In: Colombini MP, Modugno F, editors. Organic mass spectrometry in art and archaeology. New York: Wiley; 2009. p. 131–63.

    Chapter  Google Scholar 

  110. Maier MS, Parera SD, Seldes AM. Matrix-assisted laser desorption and electrospray ionization mass spectrometry of carminic acid isolated from cochineal. Int J Mass Spectrom. 2004;232:225–9.

    Article  CAS  Google Scholar 

  111. Gottschaller P, Khandekar N, Lee LF, Kirby DP. The evolution of Lucio Fontana’s painting materials. Stud Conserv. 2012;57:76–91.

    Article  CAS  Google Scholar 

  112. Khandekar N, Mancusi-Ungaro C, Cooper H, Rosenberger C, Eremin K, Smith K, et al. A technical analysis of three paintings attributed to Jackson Pollock. Stud Conserv. 2010;55:204–15.

    Article  CAS  Google Scholar 

  113. Lomax SQ, Lomax JF, De Luca-Westrate A. The use of Raman microscopy and laser desorption ionization mass spectrometry in the examination of synthetic organic pigments in modern works of art. J Raman Spectrosc. 2014;45:448–55.

    Article  CAS  Google Scholar 

  114. Yamashita M, Fenn JB, Electrospray ion source. Another variation on the free-jet theme. J Phys Chem. 1984;88:4451–9.

    Article  CAS  Google Scholar 

  115. Cech NB, Enke CG. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev. 2001;20:362–87.

    Article  CAS  Google Scholar 

  116. Dallongeville S, Koperska M, Garnier N, Reille-Taillefert G, Rolando C, Tokarski C. Identification of animal glue species in artworks using proteomics: application to a 18th century gilt sample. Anal Chem. 2011;83:9431–7.

    Article  CAS  Google Scholar 

  117. Chambery A, Di Maro A, Sanges C, Severino V, Tarantino M, Lamberti A, et al. Improved procedure for protein binder analysis in mural painting by LC-ESI/Q-q-TOF mass spectrometry: detection of different milk species by casein proteotypic peptides. Anal Bioanal Chem. 2009;395:2281–395.

    Article  CAS  Google Scholar 

  118. Fremout W, Dhaenens M, Saverwyns S, Sanyova J, Vandenabeele P, Deforce D, et al. Tryptic peptide analysis of protein binders in works of art by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2010;658:156–62.

    Article  CAS  Google Scholar 

  119. Leo G, Cartechini L, Pucci P, Sgamellotti A, Marino G, Birolo L. Proteomic strategies for the identification of proteinaceous binders in paintings. Anal Bioanal Chem. 2009;395:2269–80.

    Article  CAS  Google Scholar 

  120. Vinciguerra R, Galano E, Vallone F, Greco G, Vergara A, Bonaduce I, et al. Deglycosylation step to improve the identification of egg proteins in art samples. Anal Chem. 2015;87:10178–82.

    Article  CAS  Google Scholar 

  121. Peris-Vicente J, Simó-Alfonso E, Gimeno Adelantado JV, Doménech Carbó MT. Direct infusion mass spectrometry as a fingerprint of protein-binding media used in works of art. Rapid Commun Mass Spectrom. 2005;19:3463–7.

    Article  CAS  Google Scholar 

  122. Corso G, Gelzo M, Chambery A, Severino V, Di Maro A, Schiano Lomoriello F, et al. Characterization of pigments and ligands in a wall painting fragment from Liternum archaeological park (Italy). J Sep Sci. 2012;35:2986–93.

    Article  CAS  Google Scholar 

  123. Witkowski B, Biesaga M, Gierczak T. Proteinaceous binders identification in the works of art using ion-pairing free reversed-phase liquid chromatography coupled with tandem mass spectrometry. Anal Methods. 2012;4:1221–8.

    Article  CAS  Google Scholar 

  124. Leo G, Bonaduce I, Andreotti A, Marino G, Pucci P, Colombini MP, et al. Deamidation at asparagine and glutamine as a major modification upon deterioration/aging of proteinaceous binders in mural paintings. Anal Chem. 2011;83:2056–64.

    Article  CAS  Google Scholar 

  125. Kokkori M, Sutherland K, Boon J, Casadio F, Vermeulen M. Synergistic use of Py-THM-GCMS, DTMS, and ESI-MS for the characterization of the organic fraction of modern enamel paints. Herit Sci. 2015;3:30.

    Article  CAS  Google Scholar 

  126. La Nasa J, Degano I, Modugno F, Colombini MP. Alkyd paints in art: characterization using integrated mass spectrometry. Anal Chim Acta. 2013;797:64–80.

    Article  CAS  Google Scholar 

  127. Bonaduce I, Colombini MP, Degano I, Di Girolamo F, La Nasa J, Modugno F, et al. Mass spectrometric techniques for characterizing low-molecular-weight resins used as paint varnishes. Anal Bioanal Chem. 2013;405:1047–65.

    Article  CAS  Google Scholar 

  128. López-Montes AM, Dupont A-L, Desmazières B, Lavédrine B. Identification of synthetic dyes in early color photographs, using capillary electrophoresis and electrospray ionization-mass spectrometry. Talanta. 2013;114:217–26.

    Article  CAS  Google Scholar 

  129. Puchalska M, Połéc-Pawlak K, Zadrozna I, Hryszko H, Jarosz M. Identification of indigoid dyes in natural organic pigments used in historical art objects by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. J Mass Spectrom. 2004;39:1441–9.

    Article  CAS  Google Scholar 

  130. Lech K, Jarosz M. Novel methodology for the extraction and identification of natural dyestuffs in historical textiles by HPLC-UV-Vis-ESI MS. Case study: chasubles from the Wawel Cathedral collection. Anal Bioanal Chem. 2011;399:3241–51.

    Article  CAS  Google Scholar 

  131. Pauk V, Barták P, Lemr K. Characterization of natural organic colorants in historical and art objects by high-performance liquid chromatography. J Sep Sci. 2014;37:3393–410.

    Article  CAS  Google Scholar 

  132. Lech K, Połeć-Pawlak K, Jarosz M. Mass spectrometry in identification of color components of natural organic dyestuffs used in art. Chem Anal. 2008;53:479–509.

    CAS  Google Scholar 

  133. Rosenberg. Characterization of historical organic dyestuffs by liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2008;391:33–57.

    Article  CAS  Google Scholar 

  134. Mazel V, Richardin P. ToF-SIMS study of organic materials in cultural heritage: identification and chemical Imaging. In: Colombini MP, Modugno F, editors. Organic mass spectrometry in art and archaeology. New York: Wiley; 2009. p. 433–59.

    Chapter  Google Scholar 

  135. Spoto G. Secondary ion mass spectrometry in art and archaeology. Thermochim Acta. 2000;365:157–66.

    Article  CAS  Google Scholar 

  136. Adriaens A, Dowsett MG. Applications of SIMS to cultural heritage studies. Appl Surf Sci. 2006;252:7096–101.

    Article  CAS  Google Scholar 

  137. Kollmer F. Cluster primary ion bombardment of organic materials. Appl Surf Sci. 2004;231(232):153–8.

    Article  CAS  Google Scholar 

  138. Touboul D, Kollmer F, Niehuis E, Brunelle A, Laprévote O. Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J Am Soc Mass Spectrom. 2005;16:1608–18.

    Article  CAS  Google Scholar 

  139. Keune K, Boon JJ. Imaging secondary ion mass spectrometry of a paint cross section taken from an Early Netherlandish painting by Rogier Van Der Weyden. Anal Chem. 2004;76:1374–85.

    Article  CAS  Google Scholar 

  140. Keune K, Ferreira ESB, Boon JJ. Characterization and localization of the oil binding medium in paint cross sections using imaging secondary ion mass spectrometry. In: Preprints of the 14th Triennial Meeting of ICOM CC Committee for Conservation. Hague (The Netherlands). 2005;2:796–802.

    Google Scholar 

  141. Keune K, Hoogland F, Boon JJ, Peggie D, Higgitt C. Evaluation of the “added value” of SIMS: a mass spectrometric and spectroscopic study of an unusual Naples yellow oil paint reconstruction. Int J Mass Spectrom. 2009;284:22–34.

    Article  CAS  Google Scholar 

  142. Sanyova J, Cersoy S, Richardin P, Laprévote O, Walter P, Brunelle A. Unexpected materials in a Rembrandt painting characterized by high spatial resolution cluster-TOF-SIMS imaging. Anal Chem. 2011;83:753–60.

    Article  CAS  Google Scholar 

  143. Atrei A, Benetti F, Gliozzo E, Perra G, Marchettini N. Chemical characterization of protein based binders in painting samples by means of ToF-SIMS: tests on ancient and model samples. Int J Mass Spectrom. 2014;369:9–15.

    Article  CAS  Google Scholar 

  144. Di Tullio V, Capitani D, Atrei A, Benetti F, Perra G, Presciutti F, et al. Advanced NMR methodologies and micro-analytical techniques to investigate the stratigraphy and materials of 14th century Sienese wooden paintings. Microchem J. 2016;125:208–18.

    Article  CAS  Google Scholar 

  145. Atrei A, Benetti F, Bracci S, Magrini D, Marchettini N. An integrated approach to the study of a reworked painting “Madonna with child” attributed to Pietro Lorenzetti. J Cult Herit. 2014;15:80–4.

    Article  Google Scholar 

  146. Benetti F, Perra G, Damiani D, Atrei A, Marchettini N. ToF-SIMS characterization of proteinaceous binders in the wall painting “Madonna and Child enthroned with Saints” by Ambrogio Lorenzetti in the St. Augustine Church (Siena, Italy). Int J Mass Spectrom. 2015;392:111–397.

    Article  CAS  Google Scholar 

  147. Voras ZE, de Ghetaldi K, Wiggins MB, Buckley B, Baade B, Mass JL, et al. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse. Appl Phys A. 2015;121:1015–30.

    Article  CAS  Google Scholar 

  148. Boon JJ. Analytical pyrolysis mass spectrometry: new vistas opened by temperature-resolved in-source PYMS. Int J Mass Spectrom Ion Proc. 1992;118/119:755–87.

    Article  Google Scholar 

  149. Oudemans TFM, Eijkel GB, Boon JJ. Identifying biomolecular origins of solid residues preserved in Iron Age pottery using DTMS and MVA. J Archaeol Sci. 2007;34:173–93.

    Article  Google Scholar 

  150. Groen KM, van der Werf ID, van den Berg KJ, Boon JJ. Scientific examination of Vermeer’s Girl with a Pearl Earring. In: ‘Vermeer Studies’, Symposium Papers XXXIII, National Gallery of Art. Washington DC: University Yale Press; 1998. p. 169–83.

    Google Scholar 

  151. van der Doelen GA, Boon JJ (2005) Mass spectrometry of resinous compounds from paintings: characterization of dammar and naturally aged dammar varnish by DTMS and HPLC/GC-MS. In: Resins: ancient, and modern, preprints of the SSCR’s 2nd Resins Conference, Aberdeen 13–14 September 1995, pp. 70–75. Scottish Society for Conservation and Restoration: Aberdeen

  152. Scalarone D, van der Horst J, Boon JJ, Chiantore O. Direct-temperature mass spectrometric detection of volatile terpenoids and natural terpenoid polymers in fresh and artificially aged resins. J Mass Spectrom. 2003;38:607–17.

    Article  CAS  Google Scholar 

  153. Regert M, Rolando C. Identification of archaeological adhesives using direct inlet electron ionization mass spectrometry. Anal Chem. 2002;74:965–75.

    Article  CAS  Google Scholar 

  154. Lomax SQ, Schilling MR, Learner TJS. Modern paints uncovered. In: Learner TJS, Smithen P, Krueger JW, Schilling MR, editors. Proceedings from the Modern Paints Uncovered Symposium, London, May 16–19, 2006. Los Angeles: The Getty Conservation Institute; 2007. p. 105–17.

    Google Scholar 

  155. Boon JJ, Hoogland FG, van der Horst J. Modern paints uncovered. In: Learner TJS, Smithen P, Krueger JW, Schilling MR, editors. . Proceedings from the Modern Paints Uncovered Symposium, London May 16-19, 2006. Los Angeles: The Getty Conservation Institute; 2007. p. 85–95.

    Google Scholar 

  156. van den Brink O (2001) Molecular changes in egg tempera paint dosimeters as tools to monitor the museum environment. PhD thesis. University of Amsterdam: The Netherlands

  157. Katsibiri O, Howe RF. Characterization of the transparent surface coatings on post-Byzantine icons using microscopic, mass spectrometric and spectroscopic techniques. Microchem J. 2010;94:14–23.

    Article  CAS  Google Scholar 

  158. Cody RB, Laramee JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–302.

    Article  CAS  Google Scholar 

  159. Gross JH. Direct analysis in real time—a critical review on DART-MS. Anal Bioanal Chem. 2014;406:63–80.

    Article  CAS  Google Scholar 

  160. Jorabchi K, Hanold K, Syage J. Ambient analysis by thermal desorption atmospheric pressure photoionization. Anal Bioanal Chem. 2013;405:7011–8.

    Article  CAS  Google Scholar 

  161. Venter A, Nefliu M, Cooks RG. Ambient desorption ionization mass spectrometry. Trends Anal Chem. 2008;27:284–90.

    Article  CAS  Google Scholar 

  162. Adams J. Analysis of printing and writing papers by using direct analysis in real time mass spectrometry. Int J Mass Spectrom. 2011;301:109–26.

    Article  CAS  Google Scholar 

  163. DeRoo CS, Armitage RA. Direct identification of dyes in textiles by direct analysis in real time-time of flight mass spectrometry. Anal Chem. 2011;83:6924–8.

    Article  CAS  Google Scholar 

  164. Fraser D, DeRoo CS, Cody RB, Armitage RA. Characterization of blood in an encrustation on an African mask: spectroscopic and direct analysis in real time mass spectrometric identification of haem. Analyst. 2013;138:4470–4.

    Article  CAS  Google Scholar 

  165. Armitage RA, Day C, Jakes KA. Identification of anthraquinone dye colorants in red fibers from an Ohio Hopewell Mound site by direct analysis in real time mass spectrometry. STAR: Sci Technol Archaeol Res. 2015;1:1–10.

    Article  Google Scholar 

  166. Jarvis KE, Gray AL, Houk RS. Handbook of inductively coupled plasma mass spectrometry. Glasgow: Blackie; 1992.

    Book  Google Scholar 

  167. Ammann AA. Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool. J Mass Spectrom. 2007;42:419–27.

    Article  CAS  Google Scholar 

  168. Prange A, Profrock D. Chemical labels and natural element tags for the quantitative analysis of bio-molecules. J Anal At Spectrom. 2008;23:432–59.

    Article  CAS  Google Scholar 

  169. Sanz-Medel A, Montes-Bayón M, Fernández de la Campa R, Ruiz Encinar J, Bettmer J. Elemental mass spectrometry for quantitative proteomics. Anal Bioanal Chem. 2008;390:3–390.

    Article  CAS  Google Scholar 

  170. Rappel C, Schaumloffel D. Absolute peptide quantification by lutetium labeling and nano HPLC-ICPMS with isotope dilution analysis. Anal Chem. 2009;81:385–93.

    Article  CAS  Google Scholar 

  171. Esteban-Fernandez D, Scheler C, Linscheid MW. Absolute protein quantification by LC-ICP-MS using MeCAT peptide labeling. Anal Bioanal Chem. 2011;401:657–66.

    Article  CAS  Google Scholar 

  172. Crotti S, Granzotto C, Cairns WRL, Cescon P, Barbante C. Elemental labeling for the identification of proteinaceous-binding media in art works by ICP-MS. J Mass Spectrom. 2011;46:1298–304.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I.D.vdW. is supported by the Future in Research program financed by the Apulian Region (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inez Dorothé van der Werf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvano, C.D., van der Werf, I.D., Palmisano, F. et al. Revealing the composition of organic materials in polychrome works of art: the role of mass spectrometry-based techniques. Anal Bioanal Chem 408, 6957–6981 (2016). https://doi.org/10.1007/s00216-016-9862-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9862-8

Keywords

Navigation