Skip to main content
Log in

A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decorated with reduced graphene oxide nanocomposite

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel ultrasensitive sensing system for the rapid detection of cytochrome c (Cyt C) was developed on the basis of an electrochemiluminescence (ECL) method. A nanocomposite biosensor was made of reduced graphene oxide decorated with cerium oxide/tris(2,2-bipyridyl)ruthenium(II)/chitosan (CeO2NPs-RGO/ Ru(bpy)3 2+/CHIT) and used for this purpose. The ECL signal was produced by an electrochemical interaction between Ru(bpy)3 2+ and tripropyl amine (TPA) on the surface of the electrode. Addition of Cyt C to the solution decreases the ECL signal due to its affinity for TPA and inhibition of its reaction with Ru(bpy)3 2+. The effects of the amount of CeO2NPs-RGO, Ru(bpy)3 2+, TPA concentration as a co-reactant, and the pH of the electrolyte solution on the ECL signal intensity were studied and optimized. The results showed that the method was fast, reproducible, sensitive, and stable for the detection of Cyt C. The method has a linear range from 2.5 nM to 2 μM (R 2 = 0.995) with a detection limit of 0.7 nM. Finally, the proposed biosensor was used for the determination of Cyt C in human serum samples with RSDs of 1.8–3.6 %. The results demonstrate that this solid-state ECL quenching biosensor has high sensitivity, selectivity, and good stability.

A novel solid-state electrochemiluminescence sensor for detection of cytochrome C based on Ceria Nanoparticles Decorated Reduced Graphene Oxide Nanocomposite

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alleyne T, Joseph J, Sampson V. Cytochrome-c detection. Appl Biochem Biotechnol. 2001;90:97–105.

    Article  CAS  Google Scholar 

  2. Brown GC, Borutaite V. Regulation of apoptosis bt the redox state of cytochrome c. Biochim Biophys Acta. 2008;177:877–881.

  3. Loo FC, Ng SP, Wu CML, Konga SK. An aptasensor using DNA aptamer and white light common-path SPR spectral interferometry to detect cytochrome-c for anti-cancer drug screening. Sens Actuators B. 2014;198:416–23.

    Article  CAS  Google Scholar 

  4. Fuku X, Iftikar F, Hess E, Iwuoha E, Baker P. Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds. Anal Chim Acta. 2012;730:49–59.

    Article  CAS  Google Scholar 

  5. Pandiaraj M, Benjamin AR, Madasamy T, Vairamani K, Aryad A, Kumar Sethyd N, et al. A cost-effective volume miniaturized and microcontroller based cytochrome c assay. Sens Actuators A. 2014;220:290–7.

    Article  CAS  Google Scholar 

  6. Pandiaraj M, Madasamy T, Gollavilli PN, Balamurugan M, Kotamraju S, Rao VK, et al. Nanomaterial-based electrochemical biosensors for cytochrome c using cytochrome c reductase. Bioelectrochemistry. 2013;91:1–7.

    Article  CAS  Google Scholar 

  7. Ocaña C, Lukic S, del Valle M. Aptamer-antibody sandwich assay for cytochrome c employing an MWCNT platform and electrochemical impedance. Microchim Acta. 2015;182:2045–53.

    Article  Google Scholar 

  8. Ocaña C, Arcay E, del Valle M. Label-free impedimetric aptasensor based on epoxy-graphite electrode for the recognition of cytochrome c. Sens Actuators B. 2014;191:860–5.

    Article  Google Scholar 

  9. Liao D, Chen J, Li W, Zhang Q, Wang F, Li Y, et al. Fluorescence turn-on detection of a protein using cytochrome c as a quencher. Chem Commun. 2013;49:9458–60.

    Article  CAS  Google Scholar 

  10. Hu XW, Mao CJ, Song JM, Niu HL, Zhang SY, Huang HP. Fabrication of GO/PANi/CdSe nanocomposites for sensitive electrochemiluminescence biosensor. Biosens Bioelectron. 2013;41:372–8.

    Article  CAS  Google Scholar 

  11. Shamsipur M, Molaabasi F, Hosseinkhani S. Detection of early stage apoptotic cells based on label-free Cytochrome c assay using bioconjugated metal nanoclusters as fluorescent probes. Anal Chem. 2016;88:2188–97.

    Article  CAS  Google Scholar 

  12. Yin X, Cai J, Feng H, Wu Z, Zou J, Cai Q. A novel VS2 nanosheet-based biosensor for rapid fluorescence detection of cytochrome c. New J Chem. 2015;39:1892–8.

    Article  CAS  Google Scholar 

  13. Wang T, Zhang S, Mao C, Song J, Niu H, Jin B, et al. Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor. Biosens Bioelectron. 2012;31:369–75.

    Article  CAS  Google Scholar 

  14. Miao WJ. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108:2506–53.

    Article  CAS  Google Scholar 

  15. Hu L, Xu G. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39:3275–304.

    Article  CAS  Google Scholar 

  16. Wei H, Wang E. Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium. TrAC Trend Anal Chem. 2008;27:447–59.

    Article  CAS  Google Scholar 

  17. Xiong C, Wang H, Yuan Y, Chai Y, Yuan R. A novel solid-state Ru(bpy)3 2+ electrochemiluminescence immunosensor based on poly(ethylenimine) and polyamidoamine dendrimers as co-reactants. Talanta. 2015;131:192–7.

    Article  CAS  Google Scholar 

  18. Lei J, Ju H. Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev. 2012;41:2122–34.

    Article  CAS  Google Scholar 

  19. Borghei YS, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R. Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticle induced by DNA hybridiztion. Anal Chim Acta. 2016;904:92–7.

    Article  CAS  Google Scholar 

  20. Ahmadzadeh KH, Hosseini M, Dadmehr M, Ganjali MR. Rapid restriction enzyme free detection of DNA methytransferase activity based on DNA-templated siver nanoclusters. Anal Bioanal Chem. 2016;408:4311–8.

  21. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.

    Article  CAS  Google Scholar 

  22. Pumera M. Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev. 2010;39:4146–57.

    Article  CAS  Google Scholar 

  23. Hosseini M, Mirzanasiri N, Rezapour M, Sheikhha MH, Faridbod F, Norouzi P, et al. Sensitive determination of carbidopa through the electrochemiluminescence of luminol at graphene-modified electrodes. Luminescence. 2015;30:376–81.

    Article  CAS  Google Scholar 

  24. Peng S, Zou G, Zhang X. Nanocomposite of electrochemically reduced graphene oxide and gold nanoparticles enhanced electrochemilunescence of peroxydisulfate and its immunosensing abililty towards human IgG. J Electroanal Chem. 2012;686:25–31.

    Article  CAS  Google Scholar 

  25. Zhou K, Zhu Y, Yang X, Li C. Preparation and application of mediator‐free H2O2 biosensors of graphene‐Fe3O4 composites. Electroanalysis. 2011;23:862–9.

    Article  CAS  Google Scholar 

  26. Sun C, Li H, Chen L. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ Sci. 2012;5:8475–505.

    Article  CAS  Google Scholar 

  27. Zhang M, Yuan R, Chai Y, Wang C, Wu X. Cerium oxide-graphene as the matrix for cholesterol sensor. Anal Biochem. 2013;436:69–74.

    Article  CAS  Google Scholar 

  28. Zhu S, Guo J, Dong J, Cui Z, Lu T, Zhu C. Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors. Ultrason Sonochem. 2013;20:872–80.

    Article  CAS  Google Scholar 

  29. Dezfuli AS, Ganjali MR, Norouzi P, Faridbod F. Facile sonochemical synthesis and electrochemical investigation of ceria/graphene nanocomposites. J Mater Chem B. 2015;3:2362–70.

    Article  CAS  Google Scholar 

  30. GeorgakilasV KN, Kemp KC, Hobza P. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112:6156–214.

    Article  Google Scholar 

  31. Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy. 2012;1:107–31.

    Article  CAS  Google Scholar 

  32. Teymourian H, Salimi A, Khezrian S. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens Bioelectron. 2013;49:1–8.

    Article  CAS  Google Scholar 

  33. Jafari S, Faridbod F, Norouzi P, Dezfuli AS, Ajloo D, Mohammadipanah F, et al. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on ceria nanoparticles decorated reduced graphene oxide and fast Fourier transform square wave voltammetry. Anal Chim Acta. 2015;895:80–8.

    Article  CAS  Google Scholar 

  34. Wang G, Bai J, Wang Y, Ren Z. Prepartion and electrochemical performance of a cerium oxide–graphene nanocomposite as the anode material of a lithium ion battery. Scr Mater. 2011;65:339–42.

    Article  CAS  Google Scholar 

  35. Srivastava M, Kumar Das A, Khanra P, Elias Uddin M, Kim NH, Hee Lee J. Characterizations of in situ grown ceria nanoparticles on reduced graphene oxide as a catalyst for the electrooxidation of hydrazine. J Mater Chem A. 2013;1:9792–801.

    Article  CAS  Google Scholar 

  36. Hosseini M, Moghaddam MR, Faridbod F, Norouzi P, Karimi Pur MR, Ganjali MR. A novel solid-state electrochemiluminescence sensor based on a Ru(bpy)3 2+/nano Sm2O3 modified carbon paste electrode for the determination of l-proline. RSC Adv. 2015;5:64669–74.

    Article  CAS  Google Scholar 

  37. Hosseini M, Karimi Pur MR, Norouzi P, Moghaddam MR, Faridbod F, Ganjali MR, et al. Enhanced solid-state electrochemiluminescence of Ru(bpy)3 2+ with nano-CeO2 modified carbon paste electrode and its application in tramadol determination. Anal Methods. 2015;7:1936–42.

    Article  CAS  Google Scholar 

  38. Hong LR et al. Highly efficient electrogenerated chemiluminescence quenching of PEI enhanced Ru(bpy)3 2+ nanocomposite by hemin and Au@CeO2 nanoparticles. Biosens Bioelectron. 2015;63:392–8.

    Article  CAS  Google Scholar 

  39. Zhu Y, Li G, Zhang SY, Song JM, Mao CJ, Niu HL, et al. Synthesis and electrochemiluminescence of the CeO2/TiO2 composite. Electrochim Acta. 2011;56:7550–4.

    Article  CAS  Google Scholar 

  40. Zhou L, Huang J, Yang L, Li L, You T. Enhanced electrochemiluminescence based on Ru(bpy)3 2+-doped silica nanoparticles and graphene composite for analysis of melamine in milk. Anal Chim Acta. 2014;824:57–63.

    Article  CAS  Google Scholar 

  41. Noffsinger JB, Danielson ND. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2′-bipyridine)ruthenium(III). Anal Chem. 1987;59:865–8.

    Article  CAS  Google Scholar 

  42. Tan S, Hua L. Amperometric detection of cytochrome c by capillary electrophoresis at a sol–gel carbon composite electrode. Anal Chim Acta. 2001;450:263–7.

    Article  CAS  Google Scholar 

  43. Zhang W, He X, Chen Y, Li W, Zhang Y. Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c. Biosens Bioelectronics. 2011;26:2553–58.

  44. Qiu B, Jiang XF, Guo LH, Lin ZY, Cai ZW, Chen GN. A highly sensitive method for detection of protein based on inhibition of Ru(bpy)3 2+/TPrA electrochemiluminescent system. Electrochim Acta. 2011;56:6962–5.

    Article  CAS  Google Scholar 

  45. Huang B, Zhou X, Xue Z, Wu G, Du J, Luo D, et al. Quenching of the electrochemiluminescence of Ru(bpy)(3)(2)(+)/TPA by malachite green and crystal violet. Talanta. 2013;106:174–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Research Council of University of Tehran for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Hosseini.

Ethics declarations

All experiments with human plasma were also performed in compliance with the relevant laws in Iran and institutional guidelines, and relevant ethical committees in Tehran University of Medical Sciences and The University of Tehran approved the experiments. Consent was obtained for any experimentation with human subjects.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 41.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pur, M.R.K., Hosseini, M., Faridbod, F. et al. A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decorated with reduced graphene oxide nanocomposite. Anal Bioanal Chem 408, 7193–7202 (2016). https://doi.org/10.1007/s00216-016-9856-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9856-6

Keywords

Navigation