Skip to main content
Log in

Detection of rare species of volatile organic selenium metabolites in male golden hamster urine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Selenium has been considered as an essential trace element in mammals and its intake comes mainly from food. Mammals can metabolize both inorganic and organic species, and urinary excretion is the primary elimination route of selenium. Selenosugars and trimethylselenonium ion have been identified as major urinary metabolites. Other metabolites have been reported, but they were detected in some studies and not in others. Still, a large portion of the ingested selenium eliminated from the body is unknown. Volatile selenium species may account for a certain portion of the unknown species since they can easily be lost during sample analyses. While we analyzed male golden hamster urine in search of potential volatile pheromone(s), four volatile selenium compounds were detected. They were dimethyl selenenylsulfide, dimethyl diselenide, dimethyl bis(thio)selenide, and dimethyl selenodisulfide. When the urine samples were aged and dried for 48 h, dimethyl selenodisulfide tended to increase, while others decreased. The increase might be due to the formation of dimethyl selenodisulfide via reaction of dimethyl diselenide and dimethyl trisulfide whose concentration increased as urine aged. To our knowledge, dimethyl bis(thio)selenide and dimethyl selenodisulfide have never been demonstrated in urine. It remains to be determined whether these species are common metabolites in other animals or hamster-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Navarro-alarcon M, Cabrera-vique C. Selenium in food and the human body: a review. Sci Total Environ. 2008;400:115–41. doi:10.1016/j.scitotenv.2008.06.024.

    Article  CAS  Google Scholar 

  2. Baum MK, Shor-Posner G, Lai S, Zhang G, Lai H, Fletcher MA, et al. High risk of HIV-related mortality is associated with selenium deficiency. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;15:370–4.

    Article  CAS  Google Scholar 

  3. Pyrzynska K. Speciation analysis of some organic selenium compounds. A review. Analyst. 1996;121:77R–83R. doi:10.1039/AN996210077R.

    Article  CAS  Google Scholar 

  4. Gómez-Ariza JL, Pozas JA, Giráldez I, Morales E. Speciation of volatile forms of selenium and inorganic selenium in sediments by gas chromatography-mass spectrometry. J Chromatogr A. 1998;823:259–77. doi:10.1016/S0021-9673(98)00581-0.

    Article  Google Scholar 

  5. Francesconi KA, Pannier F. Selenium metabolites in urine: a critical overview of past work and current status. Clin Chem. 2004;50:2240–53. doi:10.1373/clinchem.2004.039875.

    Article  CAS  Google Scholar 

  6. Suzuki KT, Kurasaki K, Okazaki N, Ogra Y. Selenosugar and trimethylselenonium among urinary Se metabolites: dose- and age-related changes. Toxicol Appl Pharmacol. 2005;206:1–8. doi:10.1016/j.taap.2004.10.018.

    Article  CAS  Google Scholar 

  7. Gammelgaard B, Jackson MI, Gabel-Jensen C. Surveying selenium speciation from soil to cell—forms and transformations. Anal Bioanal Chem. 2011;399:1743–63. doi:10.1007/s00216-010-4212-8.

    Article  CAS  Google Scholar 

  8. Ganther HE. Enzymic synthesis of dimethyl selenide from sodium selenite in mouse liver extracts. Biochemistry. 1966;5:1089–98. doi:10.1021/bi00867a039.

    Article  CAS  Google Scholar 

  9. Ohta Y, Suzuki KT. Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium. Toxicol Appl Pharmacol. 2008;226:169–77. doi:10.1016/j.taap.2007.09.011.

    Article  CAS  Google Scholar 

  10. Hoffman JL, McConnell KP. Periodate-oxidized adenosine inhibits the formation of dimethylselenide and trimethylselenonium ion in mice treated with selenite. Arch Biochem Biophys. 1987;254:534–40. doi:10.1016/0003-9861(87)90134-2.

    Article  CAS  Google Scholar 

  11. Kremer D, Ilgen G, Feldmann J. GC-ICP-MS determination of dimethylselenide in human breath after ingestion of (77)Se-enriched selenite: monitoring of in-vivo methylation of selenium. Anal Bioanal Chem. 2005;383:509–15. doi:10.1007/s00216-005-0001-1.

    Article  CAS  Google Scholar 

  12. McConnell KP, Portman OW. Excretion of dimethyl selenide by the rat. J Biol Chem. 1952;195:277–82.

    CAS  Google Scholar 

  13. Riechmann T, Hirner AV, Feldmann J. Determination of organometallics in intra-oral air by LT-GC/ICP-MS. Anal Bioanal Chem. 1996;354:620–3. doi:10.1007/s0021663540620.

    Article  Google Scholar 

  14. Byard JL. Trimethyl selenide. A urinary metabolite of selenite. Arch Biochem Biophys. 1969;130:556–60. doi:10.1016/0003-9861(69)90070-8.

    Article  CAS  Google Scholar 

  15. Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT. Identification of a novel selenium metabolite, Se-methyl-N-acetylselenohexosamine, in rat urine by high-performance liquid chromatography–inductively coupled plasma mass spectrometry and –electrospray ionization tandem mass spectrometry. J Chromatogr B. 2002;767:301–12. doi:10.1016/S1570-0232(01)00581-5.

    Article  CAS  Google Scholar 

  16. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT. Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proc Natl Acad Sci U S A. 2002;99:15932–6. doi:10.1073/pnas.252610699.

    Article  CAS  Google Scholar 

  17. Bendahl L, Gammelgaard B. Separation and identification of Se-methylselenogalactosamine—a new metabolite in basal human urine—by HPLC-ICP-MS and CE-nano-ESI-(MS)2. J Anal At Spectrom. 2004;19:950–7. doi:10.1039/b406589a.

    Article  CAS  Google Scholar 

  18. Gammelgaard B, Bendahl L. Selenium speciation in human urine samples by LC- and CE-ICP-MS-separation and identification of selenosugars. J Anal At Spectrom. 2004;19:135–42. doi:10.1039/b307539g.

    Article  CAS  Google Scholar 

  19. Kuehnelt D, Kienzl N, Traar P, Le NH, Francesconi KA, Ochi T. Selenium metabolites in human urine after ingestion of selenite, L-selenomethionine, or DL-selenomethionine: a quantitative case study by HPLC/ICPMS. Anal Bioanal Chem. 2005;383:235–46. doi:10.1007/s00216-005-0007-8.

    Article  CAS  Google Scholar 

  20. Terol A, Ardini F, Basso A, Grotti M. Determination of selenium urinary metabolites by high temperature liquid chromatography-inductively coupled plasma mass spectrometry. J Chromatogr A. 2015;1380:112–9. doi:10.1016/j.chroma.2014.12.071.

    Article  CAS  Google Scholar 

  21. Loeschner K, Hadrup N, Hansen M, Pereira SA, Gammelgaard B, Møller LH, et al. Absorption, distribution, metabolism and excretion of selenium following oral administration of elemental selenium nanoparticles or selenite in rats. Metallomics. 2014;6:330–7. doi:10.1039/c3mt00309d.

    Article  CAS  Google Scholar 

  22. Jäger T, Drexler H, Göen T. Ion pairing and ion exchange chromatography coupled to ICP-MS to determine selenium species in human urine. J Anal At Spectrom. 2013;28:1402–9. doi:10.1039/c3ja50083g.

    Article  Google Scholar 

  23. Jäger T, Drexler H, Göen T (2015) Human metabolism and renal excretion of selenium compounds after oral ingestion of sodium selenite and selenized yeast dependent on the trimethylselenium ion (TMSe) status. Arch Toxicol. doi: 10.1007/s00204-015-1548-z

  24. Eichler Š, Kaňa A, Kalousová M, Vosmanská M, Korotvička M, Zima T, et al. Speciation analysis of selenium in human urine by liquid chromatography and inductively coupled plasma mass spectrometry for monitoring of selenium in body fluids. Chem Speciat Bioavailab. 2015;27:127–38. doi:10.1080/09542299.2015.1107502.

    Article  CAS  Google Scholar 

  25. Gammelgaard B, Jons O. Determination of selenite and selenate in human urine by ion chromatography and inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2000;15:945–9. doi:10.1039/B003637O.

    Article  CAS  Google Scholar 

  26. da Silva EG, Mataveli LRV, Arruda MAZ. Speciation analysis of selenium in plankton, Brazil nut and human urine samples by HPLC-ICP-MS. Talanta. 2013;110:53–7. doi:10.1016/j.talanta.2013.02.014.

    Article  Google Scholar 

  27. Cao TH, Cooney RA, Woznichak MM, May SW, Browner RF. Speciation and identification of organoselenium metabolites in human urine using inductively coupled plasma mass spectrometry and tandem mass spectrometry. Anal Chem. 2001;73:2898–902. doi:10.1021/ac0100244.

    Article  CAS  Google Scholar 

  28. Wrobel K, Wrobel K, Kannamkumarath SS, Caruso JA. Identification of selenium species in urine by ion-pairing HPLC-ICP-MS using laboratory-synthesized standards. Anal Bioanal Chem. 2003;377:670–4. doi:10.1007/s00216-003-2147-z.

    Article  CAS  Google Scholar 

  29. Klein M, Ouerdane L, Bueno M, Pannier F. Identification in human urine and blood of a novel selenium metabolite, Se-methylselenoneine, a potential biomarker of metabolization in mammals of the naturally occurring selenoneine, by HPLC coupled to electrospray hybrid linear ion trap-orbital ion trap. Metallomics. 2011;3:513–20. doi:10.1039/c0mt00060d.

    Article  CAS  Google Scholar 

  30. Huang B, Cai D, Ouyang Z. Evidence for selenourea in human urine. Chinese J Chromatogr. 1993;11:221–2.

    CAS  Google Scholar 

  31. Juresa D, Darrouzes J, Kienzl N, Bueno M, Pannier F, Potin-Gautier M, et al. An HPLC/ICPMS study of the stability of selenosugars in human urine: implications for quantification, sample handling, and storage. J Anal At Spectrom. 2006;21:684–90. doi:10.1039/b602976k.

    Article  CAS  Google Scholar 

  32. Bueno M, Pannier F. Quantitative analysis of volatile selenium metabolites in normal urine by headspace solid phase microextraction gas chromatography-inductively coupled plasma mass spectrometry. Talanta. 2009;78:759–63. doi:10.1016/j.talanta.2008.12.044.

    Article  CAS  Google Scholar 

  33. Chasteen TG. Confusion between dimethyl selenenyl sulfide and dimethyl selenone released by bacteria. Appl Organomet Chem. 1993;7:335–42. doi:10.1002/aoc.590070507.

    Article  CAS  Google Scholar 

  34. Swearingen JW, Frankel DP, Fuentes DE, Saavedra CP, Vásquez CC, Chasteen TG. Identification of biogenic dimethyl selenodisulfide in the headspace gases above genetically modified Escherichia coli. Anal Biochem. 2006;348:115–22. doi:10.1016/j.ab.2005.10.007.

    Article  CAS  Google Scholar 

  35. Kwak J, Strasser E, Luzynski K, Thoß M, Penn DJ. Are MUPs a toxic waste disposal system? PLoS One. 2016;11, e0151474. doi:10.1371/journal.pone.0151474.

    Article  Google Scholar 

  36. Spitzer M, Wildenhain J, Rappsilber J, Tyers M. BoxPlotR: a web tool for generation of box plots. Nat Methods. 2014;11:121–2. doi:10.1038/nmeth.2811.

    Article  CAS  Google Scholar 

  37. Chasteen TG, Bentley R. Biomethylation of selenium and tellurium. Chem Rev. 2003;103:1–25. doi:10.1021/cr010210+.

    Article  CAS  Google Scholar 

  38. Kagami T, Narita T, Kuroda M, Notaguchi E, Yamashita M, Sei K, et al. Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase by Pseudomonas stutzeri NT-I. Water Res. 2013;47:1361–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded, in part, by a grant from the Austrian Science Fund (FWF: P26246-B16) to Teresa G. Valencak. We are grateful to Ms. Renate Hengsberger for obtaining some of the references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kwak.

Ethics declarations

The experimental procedures were in accordance with ethical standards and guidelines on both care and use of experimental animals of the Ethical and Animal Welfare Commission of the University of Veterinary Medicine Vienna (Permit No. ETK-13/07/2015).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, J., Ohrnberger, S.A. & Valencak, T.G. Detection of rare species of volatile organic selenium metabolites in male golden hamster urine. Anal Bioanal Chem 408, 4927–4934 (2016). https://doi.org/10.1007/s00216-016-9579-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9579-8

Keywords

Navigation