Skip to main content
Log in

Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The Raman imaging method was successfully applied for mapping the distribution of biomolecules (e.g., pigments) associated with cryptoendolithic and hypoendolithic microorganisms, as well as the inorganic host mineral matrix that forms the habitat for the biota. To the best of our knowledge, this is the first comprehensive study in the field of geomicrobiology based on this technique. The studied microbial ecosystem was located nearly 3000 m above sea level within the driest desert on Earth, the Atacama in Chile. Enhancement of carotenoid Raman signal intensity close to the surface was registered at different areas of endolithic colonization dominated by algae, with cyanobacteria present as well. This is interpreted as an adaptation mechanism to the excessive solar irradiation. On the other hand, cyanobacteria synthesize scytonemin as a passive UV-screening pigment (found at both the hypoendolithic and cryptoendolithic positions). The distribution of the scytonemin Raman signal was mapped simultaneously with the surrounding mineral matrix. Thus, mapping was done of the phototrophic microorganisms in their original microhabitat together with the host rock environment. Important information which was resolved from the Raman imaging dataset of the host rock is about the hydration state of Ca-sulfate, demonstrated on the presence of gypsum (CaSO4·2H2O) and the absence of both anhydrite (CaSO4) and bassanite (CaSO4·1/2H2O). Obtaining combined “in situ” simultaneous information from the geological matrix (inorganic) together with the microbial biomolecules (organic) is discussed and concluded as an important advantage of this technique. We discuss how selection of the laser wavelength (785 and 514.5-nm) influences the Raman imaging results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Himmelsbach DS, Khahili S, Akin DE. Near-infrared-Fourier-transform-Raman microspectroscopic imaging of flax stems. Vib Spectrosc. 1999;19:361–7.

    Article  CAS  Google Scholar 

  2. Gierlinger N, Schwaninger M. Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol. 2006;140:1246–54.

    Article  CAS  Google Scholar 

  3. Agarwall UP. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta. 2006;224:1141–53.

    Article  Google Scholar 

  4. Häninen T, Kontturi E, Vuorinen T. Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging. Phytochemistry. 2011;72:1889–95.

    Article  Google Scholar 

  5. Gierlinger N, Keplinger T, Harrington M. Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc. 2012;7:1694–708.

    Article  CAS  Google Scholar 

  6. Gierlinger N, Keplinger T, Harrington M, Schwanninger M. Raman imaging of lignocellulosic feedstock. In: Theo van de Ven and John Kadla, editors. Cellulose biomass conversion 3. Rijeka: INTECH; 2013. pp. 159–192.

  7. Ji Z, Ma JF, Zhang ZH, Xu F, Sun RC. Distribution of lignin and cellulose in compression wood tracheids of Pinus yunnanensis determined by fluorescence microscopy and confocal Raman microscopy. Ind Crop Prod. 2013;47:212–7.

    Article  CAS  Google Scholar 

  8. Baranski R, Baranska M, Schulz H. Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta. 2005;222:448–57.

    Article  CAS  Google Scholar 

  9. Schulz H, Baranska M, Baranski R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers. 2005;7:212–21.

    Article  Google Scholar 

  10. Collins AM, Jones HDT, Han D, Hu Q, Beechem TE, Timlin JA. Carotenoids distribution in living cells of Haematococcus pluvialis (Chlorophyceae). Plos One. 2011;6:e24302.

    Article  CAS  Google Scholar 

  11. Urban PL, Schmid T, Amantonico A, Zenobi R. Multidimensional analysis of single algal cells by integrating microspectroscopy with mass spectrometry. Anal Chem. 2010;83:1843–9.

    Article  Google Scholar 

  12. Gowen AA, Feng Y, Gaston E, Valdramidis V. Recent applications of hyperspectral imaging in microbiology. Talanta. 2015;137:43–54.

    Article  CAS  Google Scholar 

  13. Marshall CP, Olcott Marshall A. Raman hyperspectral imaging of microfossils: potential pitfalls. Astrobiology. 2013;13:920–31.

    Article  CAS  Google Scholar 

  14. Hofmann A, Bolhar R, Orberger F. Cherts of the Barberton greenstone belt, South Africa: petrology and trace-element geochemistry of 3.5 to 3.3 Ga old silicified volcanoclastic sediments. S Afr J Geol. 2013;116:297–322.

    Article  CAS  Google Scholar 

  15. Schopf JW, Kudryavtsev AB, Walter MR, Van Kranendonk MJ, Williford KH, Kozdon R, et al. Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution’s null hypothesis. Proc Natl Acad Sci U S A. 2015;112:2087–92.

    Article  CAS  Google Scholar 

  16. Foucher F, Westall F. Raman imaging of metastable opal in carbonaceous microfossils of the 700-800 Ma old Draken formation. Astrobiology. 2013;13:57–67.

    Article  CAS  Google Scholar 

  17. Foucher F, Lopez-Reyes G, Bost N, Rull-Perez F, Rüβmann P, Westall F. Effect of grain size distribution on Raman analyses and the consequences for in situ planetary missions. J Raman Spectrosc. 2013;44:916–25.

    Article  CAS  Google Scholar 

  18. Westall F, Foucher F, Bost N, Bertrand M, Loizeau D, Vago JL, et al. Biosignatures on Mars: what, where, and how? Implications for search for Martian life. Astrobiology. 2015;15:998–1029.

    Article  Google Scholar 

  19. Wang A, Korotev RL, Jolliff BL, Ling Z. Raman imaging of extraterrestrial materials. Planet Space Sci. 2015;112:23–34.

    Article  Google Scholar 

  20. Korsakov AV, Toporski J, Dieing T, Yang J, Zelenovskiy PS. Internal diamond morphology: Raman imaging of metamorphic diamonds. J Raman Spectrosc. 2015;46:880–8.

    Article  CAS  Google Scholar 

  21. Vítek P, Jehlička J, Ascaso C, Mašek V, Gómez-Silva B, Oliváres H, et al. Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile. FEMS Microbiol Ecol. 2014;90:351–66.

    Google Scholar 

  22. Morillas H, Maguregui M, Marcaida I, Trebolazabala J, Salcedo I, Madariaga JM. Characterization of the main colonizer and biogenic pigments present in the red biofilm from La Galea Fortress sandstone by means of microscopic observations and Raman imaging. Microchem J. 2015;121:48–55.

    Article  CAS  Google Scholar 

  23. Wierzchos J, DiRuggiero J, Vítek P, Artieda O, Souza-Egipsy V, Škaloud P, et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front Microbiol. 2015;6:934.

    Article  Google Scholar 

  24. Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz R. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia. 1993;49:825–9.

    Article  CAS  Google Scholar 

  25. Ehling-Schulz M, Bilger W, Scherer S. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol. 1997;179:1940–5.

    CAS  Google Scholar 

  26. Garcia-Pichel F. Solar ultraviolet and the evolutionary history of cyanobacteria. Orig Life Evol Biosph. 1998;28:321–47.

    Article  CAS  Google Scholar 

  27. Dillon JG, Castenholz RW. Scytonemin, a cyanobacterial sheath pigment, protects against UVC radiation implications for early photosynthetic life. J Phycol. 1999;35:673–81.

    Article  CAS  Google Scholar 

  28. Ehling-Schulz M, Scherer S. UV protection in cyanobacteria. Eur J Phycol. 1999;34:329–38.

    Article  Google Scholar 

  29. Vítek P, Edwards HGM, Jehlička J, Ascaso C, de los Ríos A, Valea S, et al. Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Phil Trans R Soc A. 2010;368:3205–21.

    Article  Google Scholar 

  30. Edwards HGM, Garcia-Pichel F, Newton EM, Wynn-Williams DD. Vibrational Raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment. Spectrochim Acta A. 2000;56:193–200.

    Article  Google Scholar 

  31. Anderson JC, Robertson DS. Role of carotenoids in protecting chlorophyll from photodestruction. Plant Physiol. 1960;35:531–4.

    Article  CAS  Google Scholar 

  32. Krinsky NI. Carotenoid protection against oxidation. Pure Appl Chem. 1979;51:649–60.

    Article  CAS  Google Scholar 

  33. Siefermann-Harms D. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant. 1987;69:561–8.

    Article  CAS  Google Scholar 

  34. Telfer A, Pascal A, Gall A. Carotenoids in photosynthesis. In: Britton G, Liaanen-Jensen S, Pfander H, editors. Carotenoids. Basel: Birkhäuser; 2008. p. 265–308.

    Chapter  Google Scholar 

  35. Gill D, Kilponen RG, Rimai L. Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature. 1970;227:743.

    Article  CAS  Google Scholar 

  36. Merlin JC. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl Chem. 1985;57:785–92.

    Article  CAS  Google Scholar 

  37. Nienow JA. Extremophiles, dry environments (including cryptoendoliths). In: Encyclopedia of microbiology. Oxford: Elsevier; 2009. p. 159–73.

    Chapter  Google Scholar 

  38. Wierzchos J, Cámara B, de los Ríos A, Davila AF, Sánchez-Almazo IM, Artieda O, et al. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert; implications for the search for life on Mars. Geobiology. 2011;9:44–60.

    Article  CAS  Google Scholar 

  39. Horta JDOS. Calcrete, gypcrete and soil classification in Algeria. Eng Geol. 1980;15:15–52.

    Article  CAS  Google Scholar 

  40. Palacio S, Azorín J, Monserrat-Martí G, Ferrio JP. The crystallization water of gypsum rocks is a relevant water source for plants. Nat Commun. 2014;5:4660.

    Article  CAS  Google Scholar 

  41. Sarma LP, Prasad PSR, Ravikumar N. Raman spectroscopic study of phase transitions in natural gypsum. J Raman Spectrosc. 1998;29:851–6.

    Article  CAS  Google Scholar 

  42. Liu Y, Wang A, Freeman JJ. Raman, MIR, and NIR spectroscopic study of calcium sulfates: gypsum, bassanite, and anhydrite. 40th Lunar and Planetary Conference 2009; abstract no. 2128.

  43. Rondanelli R, Molina A, Falvey M. The Atacama surface solar maximum. Bull Am Meteorol Soc. 2015;96:405–18.

    Article  Google Scholar 

  44. Houston J. Evaporation in the Atacama Desert, an empirical study of spatio-temporal variations and their causes. J Hydrol. 2006;330:402–12.

    Article  Google Scholar 

  45. Azua-Bústos A, Caro-Lara L, Vicuňa R. Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environ Microbiol Rep. 2015;7:388–94.

    Article  Google Scholar 

  46. Cabrol NA, Feister U, Häder DP, Piazena H, Grin EA, Klein A. Record solar UV irradiance in the tropical Andes. Front Environ Sci. 2014;2:19.

    Article  Google Scholar 

  47. Lunch CK, LaFountain AM, Thomas S, Frank HA, Lewis LA, Cardon ZG. The xanthophyll cycle and NPQ in diverse desert and aquatic green algae. Photosynth Res. 2013;115:139–51.

    Article  CAS  Google Scholar 

  48. Lee E. Imaging modes. In: Zoubir A, editor. Raman imaging, techniques and applications. Springer series in optical sciences 168. Berlin, Heidelberg: Springer; 2012. pp. 1–37.

  49. Withnall R, Chowdhry BZ, Silver J, Edwards HGM, de Oliveira LFC. Raman spectra of carotenoids in natural products. Spectrochim Acta A. 2003;59:2207–12.

    Article  Google Scholar 

  50. Marshall CP, Leuko S, Coyle CM, Walter MR, Burns BP, Neilan BA. Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. Astrobiology. 2007;7:631–43.

    Article  CAS  Google Scholar 

  51. Vítek P, Jehlička J, Edwards HGM, Osterrothová K. Identification of β-carotene in an evaporitic matrix—evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal Bioanal Chem. 2009;393:1967–75.

    Article  Google Scholar 

  52. Marshall CP, Olcott Marshall A. Challenges analyzing gypsum on Mars by Raman spectroscopy. Astrobiology. 2015;15:761–9.

    Article  CAS  Google Scholar 

  53. Hamdona SK, Al Hadad UA. Crystallization of calcium sulfate dihydrate in the presence of some metal ions. J Cryst Growth. 2007;299:146–51.

    Article  CAS  Google Scholar 

  54. Moncorge R, Cormier G, Simkin DJ, Capobianco JA. Fluorescence analysis of chromium-doped forsterite (Mg2SIO4). IEEE J Quantum Electron. 1991;27:114–20.

    Article  CAS  Google Scholar 

  55. Vítek P, Jehlička J, Edwards HGM, Hutchinson I, Ascaso C, Wierzchos J. Miniaturized Raman instrumentation detects carotenoids in Mars-analogue rocks from the Mojave and Atacama deserts. Phil Trans R Soc A. 2014;372:20140196.

    Article  Google Scholar 

  56. Vítek P, Jehlička J, Edwards HGM, Hutchinson I, Ascaso C, Wierzchos J. Miniaturized Raman system and the detection of traces of life in halite from the Atacama Desert: some considerations for the search for life signatures on Mars. Astrobiology. 2012;12:1095–9.

    Article  Google Scholar 

  57. Wang A, Freeman JJ, Jolliff BL, Chou IM. Sulfates on Mars: a systematic Raman spectroscopic study of hydration states of magnesium sulfates. Geochim Cosmochim Acta. 2006;70:6118–35.

    Article  CAS  Google Scholar 

  58. Vítek P, Jehlička J, Edwards HGM. Practical considerations for the field application of miniaturized portable Raman instrumentation for the identification of minerals. Appl Spectrosc. 2013;67:767–78.

    Article  Google Scholar 

  59. Culka A, Košek F, Drahota P, Jehlička J. Use of miniaturized Raman spectrometer for detection of sulfates of different hydration states—significance for Mars studies. Icarus. 2014;243:440–53.

    Article  CAS  Google Scholar 

  60. Freyer D, Voigt W. Crystallization and phase stability of CaSO4 and CaSO4-based salts. Monatsh Chem. 2003;134:693–719.

    Article  CAS  Google Scholar 

  61. Deutsch Y, Nathan Y, Sarig S. Thermogravimetric evaluation of the kinetics of the gypsum-hemihydrate-soluble anhydrite transitions. J Therm Anal Calorim. 1994;42:159–74.

    Article  CAS  Google Scholar 

  62. Charola AE, Pühringer J, Steiger M. Gypsum: a review of its role in the deterioration of building materials. Environ Geol. 2007;52:339–52.

    Article  CAS  Google Scholar 

  63. Lou W, Guan B, Wu Z. Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis. J Therm Anal Calorim. 2011;104:661–9.

    Article  CAS  Google Scholar 

  64. Ossorio M, Van Driessche AES, Pérez P, García-Ruiz JM. The gypsum-anhydrite paradox revisited. Chem Geol. 2014;386:16–21.

    Article  CAS  Google Scholar 

  65. Yechieli Y, Wood WW. Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes. Earth Sci Rev. 2002;58:343–65.

    Article  CAS  Google Scholar 

  66. Wierzchos J, de los Ríos A, Sancho LG, Ascaso C. Viability of endolithic micro‐organisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy. J Microsc. 2004;216:57–61.

    Article  CAS  Google Scholar 

  67. Tashyreva D, Elster J, Billi D. A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (Cyanobacteria) employing fluorescent dyes. Plos One. 2013;8:e55283.

    Article  CAS  Google Scholar 

  68. Roldán M, Ascaso C, Wierzchos J. Fluorescent fingerprints of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama Desert. Appl Environ Microbiol. 2014;80:2998–3006.

    Article  Google Scholar 

  69. Nasdala L, Beyssac O, Schopf JW, Bleisteiner B. Application of Raman-based images in the Earth sciences. In: Zoubir A, editor. Raman imaging, techniques and applications. Springer series in optical sciences 168. Berlin, Heidelberg: Springer; 2012. pp. 145–187.

  70. Everall N. Optimising image quality in 2D and 3D confocal Raman mapping. J Raman Spectrosc. 2013;45:133–8.

    Article  Google Scholar 

Download references

Acknowledgments

PV wishes to thank the Ministry of Education, Youth and Sport for the NPU I grant (Grant No. LO1415); JW, OA, and CA wish to thank MINECO, Spain, for financial support via Grant No. CGL-2013-42509P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Vítek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vítek, P., Ascaso, C., Artieda, O. et al. Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert. Anal Bioanal Chem 408, 4083–4092 (2016). https://doi.org/10.1007/s00216-016-9497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9497-9

Keywords

Navigation