Skip to main content
Log in

Separation, detection and characterization of nanomaterials in municipal wastewaters using hydrodynamic chromatography coupled to ICPMS and single particle ICPMS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Engineered nanoparticles (ENP) are increasingly being incorporated into consumer products and reaching the environment at a growing rate. Unfortunately, few analytical techniques are available that allow the detection of ENP in complex environmental matrices. The major limitations with existing techniques are their relatively high detection limits and their inability to distinguish ENP from other chemical forms (e.g. ions, dissolved) or from natural colloids. Of the matrices that are considered to be a priority for method development, ENP are predicted to be found at relatively high concentrations in wastewaters and wastewater biosolids. In this paper, we demonstrate the capability of hydrodynamic chromatography (HDC) coupled to inductively coupled plasma mass spectrometry (ICPMS), in its classical and single particle modes (SP ICPMS), to identify ENP in wastewater influents and effluents. The paper first focuses on the detection of standard silver nanoparticles (Ag NP) and their mixtures, showing that significant dissolution of the Ag NP was likely to occur. For the Ag NP, detection limits of 0.03 μg L−1 were found for the HDC ICPMS whereas 0.1 μg L−1 was determined for the HDC SP ICPMS (based on results for the 80 nm Ag NP). In the second part of the paper, HDC ICPMS and HDC SP ICPMS were performed on some unspiked natural samples (wastewaters, river water). While nanosilver was below detection limits, it was possible to identify some (likely natural) Cu nanoparticles using the developed separation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hochella MF. Nanoscience and technology the next revolution in the Earth sciences. Earth Planet Sci Lett. 2002;203(2):593–605. doi:10.1016/s0012-821x(02)00818-x.

    Article  CAS  Google Scholar 

  2. Rejeski D, Kuiken T, Pauwels E. Project on Emerging Nanotechnologies. 2013. http;//www.nanotechproject.org/.

  3. Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Gray EP, Higgins CP, et al. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ Sci Technol. 2012;46(22):12272–80. doi:10.1021/es301787d.

    Article  CAS  Google Scholar 

  4. Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ Toxicol Chem. 2012;31(1):115–21. doi:10.1002/etc.719.

    Article  CAS  Google Scholar 

  5. Pycke BFG, Benn TM, Herckes P, Westerhoff P, Halden RU. Strategies for quantifying C-60 fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology. Trac-Trends in Anal Chem. 2011;30(1):44–57. doi:10.1016/j.trac.2010.08.005.

    Article  CAS  Google Scholar 

  6. Gottschalk F, Ort C, Scholz RW, Nowack B. Engineered nanomaterials in rivers—exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut. 2011;159(12):3439–45. doi:10.1016/j.envpol.2011.08.023.

    Article  CAS  Google Scholar 

  7. Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol. 2008;42(12):4447–53. doi:10.1021/es7029637.

    Article  CAS  Google Scholar 

  8. Schultz AG, Boyle D, Chamot D, Ong KJ, Wilkinson KJ, McGeer JC, et al. Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing. Environ Chem. 2014;11(3):207–26. doi:10.1071/en13221.

    Article  CAS  Google Scholar 

  9. Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins CP, Ranville JF. Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS) (vol 27, pg 1131, 2012). J Anal At Spectrom. 2013;28(12):1949.

    Article  Google Scholar 

  10. Tiede K, Boxall ABA, Wang X, Gore D, Tiede D, Baxter M, et al. Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge. J Anal At Spectrom. 2010;25(7):1149–54. doi:10.1039/b926029c.

    Article  CAS  Google Scholar 

  11. von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ, et al. Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem. 2012;31(1):32–49. doi:10.1002/etc.723.

    Article  Google Scholar 

  12. Weinberg H, Galyean A, Leopold M. Evaluating engineered nanoparticles in natural waters. Trac-Trends Anal Chem. 2011;30(1):72–83. doi:10.1016/j.trac.2010.09.006.

    Article  CAS  Google Scholar 

  13. Proulx K, Wilkinson KJ. Separation, detection and characterisation of engineered nanoparticles in natural waters using hydrodynamic chromatography and multi-method detection (light scattering, analytical ultracentrifugation and single particle ICP-MS). Environ Chem. 2014;11(4):392–401. doi:10.1071/en13232.

    Article  CAS  Google Scholar 

  14. Philippe A, Schaumann GE. Evaluation of hydrodynamic chromatography coupled with UV-visible, fluorescence and inductively coupled plasma mass spectrometry detectors for sizing and quantifying colloids in environmental media. Plos One. 2014;9(2). doi:10.1371/journal.pone.0090559.

  15. Striegel AM, Brewer AK. Hydrodynamic chromatography. In: Cooks RG, Yeung ES, editors. Annual Review of Analytical Chemistry, Vol 5. Annual Review of Analytical Chemistry; 2012. p. 15–34.

  16. Degueldre C, Favarger PY. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf A. 2003;217(1–3):137–42. doi:10.1016/s0927-7757(02)00568-x.

    Article  CAS  Google Scholar 

  17. Degueldre C, Favarger PY, Wold S. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Anal Chim Acta. 2006;555(2):263–8. doi:10.1016/j.aca.2005.09.021.

    Article  CAS  Google Scholar 

  18. Rakcheev D, Philippe A, Schaumann GE. Hydrodynamic chromatography coupled with single particle-inductively coupled plasma mass spectrometry for investigating nanoparticles agglomerates. Anal Chem. 2013;85(22):10643–7. doi:10.1021/ac4019395.

    Article  CAS  Google Scholar 

  19. Laborda F, Jimenez-Lamana J, Bolea E, Castillo JR. Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2011;26(7):1362–71. doi:10.1039/c0ja00098a.

    Article  CAS  Google Scholar 

  20. Domingos RF, Baalousha MA, Ju-Nam Y, Reid M, Tufenkji N, Lead JR, Leppard GG, Wilkinson KJ. Characterizing manufactured nanoparticles in the environment - multimethod determination of particle sizes. Environ Sci Technol. 2009;43:7277–84. doi:10.1021/es900249m.

  21. Larkin M. Introduction to light scattering and phase analysis light scattering. Santa Barbara: Wyatt Technology Corporation; 2013.

    Google Scholar 

  22. Hadioui M, Peyrot C, Wilkinson KJ. Improvements to single particle ICPMS by the online coupling of ion exchange resins. Anal Chem. 2014;86(10):4668–74. doi:10.1021/ac5004932.

    Article  CAS  Google Scholar 

  23. Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem. 2011;83(24):9361–9. doi:10.1021/ac201952t.

    Article  CAS  Google Scholar 

  24. Franze B, Strenge I, Engelhard C. Single particle inductively coupled plasma mass spectrometry: evaluation of three different pneumatic and piezo-based sample introduction systems for the characterization of silver nanoparticles. J Anal At Spectrom. 2012;27(7):1074–83. doi:10.1039/c2ja00003b.

    Article  CAS  Google Scholar 

  25. Cumberland SA, Lead JR. Particle size distributions of silver nanoparticles at environmentally relevant conditions. J Chromatogr A. 2009;1216(52):9099–105. doi:10.1016/j.chroma.2009.07.021.

    Article  CAS  Google Scholar 

  26. Meermann B. Field-flow fractionation coupled to ICP-MS: separation at the nanoscale, previous and recent application trends. Anal Bioanal Chem. 2015;407(10):2665–74. doi:10.1007/s00216-014-8416-1.

    Article  CAS  Google Scholar 

  27. Meisterjahn B, Neubauer E, Von der Kammer F, Hennecke D, Hofmann T. Asymmetrical flow-field-flow fractionation coupled with inductively coupled plasma mass spectrometry for the analysis of gold nanoparticles in the presence of natural nanoparticles. J Chromatogr A. 2014;1372:204–11. doi:10.1016/j.chroma.2014.10.093.

    Article  CAS  Google Scholar 

  28. Hadioui M, Merdzan V, Wilkinson KJ. Detection and characterization of ZnO nanoparticles in surface and waste waters using single particle ICPMS. Environ Sci Technol. 2015;49(10):6141–8. doi:10.1021/acs.est.5b00681.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the Natural Sciences and Engineering Research Council of Canada, the Fonds de Recherche du Québec - Nature et Technologies, the Canadian Water Network and the City of Calgary. Assistance from the Repentigny, Le Gardeur and Montreal WWTP and the groups of Y. Comeau (École Polytechnique) and S. Ghoshal (McGill) was also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Wilkinson.

Ethics declarations

Conflict of Interest

The authors declare having no conflicts of interest related to this publication.

Additional information

Published in the topical collection Single-particle-ICP-MS Advances with guest editors Antonio R. Montoro Bustos and Michael R. Winchester.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1007 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proulx, K., Hadioui, M. & Wilkinson, K.J. Separation, detection and characterization of nanomaterials in municipal wastewaters using hydrodynamic chromatography coupled to ICPMS and single particle ICPMS. Anal Bioanal Chem 408, 5147–5155 (2016). https://doi.org/10.1007/s00216-016-9451-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9451-x

Keywords

Navigation