Skip to main content
Log in

Single particle ICP-MS combined with filtration membrane for accurate determination of silver nanoparticles in the real aqueous environment

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This work presents the role of commercial microfiltration membranes combined with single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) in removing environmental matrix interference for model silver nanoparticles (AgNPs) determination. The filters with different pore sizes (0.22 μm, 0.45 μm, 0.8 μm) and materials (mixed cellulose ester, polyether sulfone, and nylon) were investigated to acquire the recovery of particle concentration and size of AgNPs spiked into different real aqueous solutions, including ultrapure water, tap water, surface water, and sewage effluent. The maximum recovery of nanoparticle concentration was 70.2% through the 0.8 μm polyether sulfone membrane. The heated filters were able to improve the recovery of AgNPs particle concentration in the real aqueous environment. Hence, the pretreatment method by SP-ICP-MS combined with filtration membrane was simple, fast, and low-cost to quantify AgNPs in natural water environments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

We approved that the datas in the paper were used for this journal.

References

  1. M. Auffan, J. Rose, J. Y. Bottero, G. V. Lowry, J. P. Jolivet, M. R. Wiesner (2009). https://doi.org/10.1038/nnano.2009.242

  2. M. Bundschuh, J. Filser, S. Lüderwald, M. S. McKee, G. Metreveli, G. E. Schaumann, R. Schulz, S. Wagner (2018). https://doi.org/10.1186/s12302-018-0132-6

  3. M. A. Maurer-Jones, I. L. Gunsolus, C. J. Murphy, C. L. Haynes (2013). https://doi.org/10.1021/ac303636s

  4. C. Gagnon, P. Turcotte, F. Gagné, S. Smyth (2021). https://doi.org/10.1007/s11356-021-15486-x

  5. R. G. Vega, T. E. Lockwood, X. X. Xu, C.G.de Vega, J. Scholz, M. Horstmann, P. A. Doble, D. Clases (2022). https://doi.org/10.1007/s00216-022-04052-0

  6. C. C. Li, F. Dang, M. Li, M. Zhu, H. Zhong, H. Hintelmann, D. M. Zhou (2017). https://doi.org/10.1080/17435390.2017.1344740

  7. M. S. Bakshi (2020) https://doi.org/10.1016/j.envres.2019.109099

  8. Q. F. Zhou, L. H. Liu, N. Liu, B. He, L. G. Hu, L. N. Wang (2020). https://doi.org/10.1016/j.ecoenv.2020.110670

  9. A. Syafiuddin, S. Salmiati, T. Hadibarata, A. B. H. Kueh, M. R. Salim, M. A. A. Zaini (2018). https://doi.org/10.1038/s41598-018-19375-1

  10. B. Giese, F. Klaessig, B. Park, R. Kaegi, M. Steinfeldt, H. wigger, A. V. Gleich, F. Gottschalk (2018) https://doi.org/10.1038/s41598-018-19275-4

  11. J. H. Sim, H. N. Umh, H. H. Shin, H. K. Sung, S. Y. Oh, B.C. Lee, S. Rengaraj, Y. H. Kim (2014). https://doi.org/10.1016/j.jiec.2013.11.019

  12. I. Bhatt, B. N. Tripathi (2011). https://doi.org/10.1016/j.chemosphere.2010.10.011

  13. M. A. Islam, M. V. Jacob, E. Antunes (2021). https://doi.org/10.1016/j.jenvman.2020.111918

  14. N. B. Turan, H. S. Erkan, G. O. Engin, M. S. Bilgili (2019). https://doi.org/10.1016/j.psep.2019.08.014

  15. F. V. D. Kammer, P. L. Ferguson, P. A. Holden, A. Masion, K. R. Rogers, S. J. Klaine, A. A. Koelmans, N. Horne, J. M. Unrine.https://doi.org/10.1002/etc.723

  16. P. Luo, A. Roca, K. Tiede, K. Privett, J. C. Jiang, J. Pinkstone, G. Ma, J. Veinot, A. Boxall. https://doi.org/10.1016/j.jes.2016.07.019

  17. S. L. Chinnapongse, R. I. Maccuspie, V. A. Hackley (2011) https://doi.org/10.1016/j.scitotenv.2011.03.020

  18. H. Zänker, A. Schierz (2012). https://doi.org/10.1146/annurev-anchem-062011-143130

  19. P. Krystek, A. Ulrich, C. C. Garcia, S. Manohar, R. Ritsema (2011). https://doi.org/10.1039/C1JA10071H

  20. . Laborda, E. Bolea, J. Jiménez-Lamana (2014). https://doi.org/10.1021/ac402980q

  21. A. G. Howard (2010) https://doi.org/10.1039/B913681A

  22. M. D. Montaño, J. W. Olesik, A. G. Barber, K. Challis, J. F. Ranville (2016). https://doi.org/10.1007/s00216-016-9676-8

  23. M. Zhang, J. H. Yang, Z. X. Cai, Y. D. Feng, Y. F. Wang, D. Y. Zhang, X. L. Pan (2019). https://doi.org/10.1039/C8EN01086B

  24. . B. Hartmann, K. A. Jensen, A. Baun, K. Rasmussen, H. Rauscher, R. Tantra, D. Cupi, D. Gilliland, F. Pianella, J. M. Riego Sintes (2015). https://doi.org/10.1080/10937404.2015.1074969

  25. A. R. Donovan, C. D. Adams, Y. Ma, C. Stephan, T. Eichholz, H. L. Shi (2016). https://doi.org/10.1016/j.chemosphere.2015.07.081

  26. I. Jreije, M. Hadioui, K. J. Wilkinson (2022). https://doi.org/10.1016/j.talanta.2021.123060

  27. L. Li, Q. Wang, Y. Yang, L. Luo, R. Ding, Z. G. Yang, H. P. Li (2019). https://doi.org/10.1021/acs.analchem.8b05575

  28. L. X. Y. Li, G. Hartmann, M. Doeblinger, M. Schuster (2013). https://doi.org/10.1021/es3041658

  29. A. R. Whitley, C. Levard, E. Oostveen, P. M. Bertsch, C. J. Matocha, F.von der Kammer, J. M. Unrine (2013). https://doi.org/10.1016/j.envpol.2013.06.027

  30. C. Degueldre, P. Y. Favarger (2004). https://doi.org/10.1016/j.talanta.2003.10.016

  31. H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, C. P. Higgins, J. F. Ranville (2011). https://doi.org/10.1021/ac201952t

  32. F. Y. Tou, Z. S. Niu, J. Q. Fu, J. Y. Wu, M. Liu, Y. Yang (2021). https://doi.org/10.1021/acs.est.1c00983

  33. H. Lee, D. Segets, S. Süß, W. Peukert, S. C. Chen, D. Y. H. Pui (2018). https://doi.org/10.1016/j.memsci.2018.09.033

  34. J. Olabarrieta, O. Monzon, Y. Belaustegui, J. Alvarez, S. Zorita (2018). https://doi.org/10.1016/j.scitotenv.2017.11.003

  35. X. X. Zhou, J. F. Liu, G. B. Jiang (2017). https://doi.org/10.1021/acs.est.6b05539

  36. A. H. Hawari, N. Kamal, A. Altaee (2016). https://doi.org/10.1016/j.desal.2016.07.023

  37. PD CEN ISO/TS 19590: 2019 Nanotechnologies—Size distribution and concentration of inorganic nanoparticles in aqueous media via single particle inductively coupled plasma mass spectrometry

  38. F. Laborda, J. Jiménez-Lamana, E. Bolea, J. R. Castillo (2013). https://doi.org/10.1039/C3JA50100K

  39. D. M. Mitrano, A. Barber, A. Bednar, P. Westerhoff, C. P. Higgins, J. F. Ranville. 27 (2012). https://doi.org/10.1039/C2JA30021D

  40. S. Y. Lee, X. Y. Bi, R. B. Reed, J. F. Ranville, P. Herckes, P. Westerhoff (2014). https://doi.org/10.1021/es502422v

  41. F. Laborda, A. C. Gimenez- Ingalaturre, E. Bolea, J. R. Castillo. 169 (2020) https://doi.org/10.1016/j.sab.2020.105883

  42. M. Hadioui, G. Knapp, A. Azimzaga, I. Jreije, L. Frechette-Viens, K. J. Wilkinson (2019). https://doi.org/10.1021/acs.analchem.9b04007

  43. A. C. Gimenez-Ingalaturre, K. Ben-Jeddou, J. Perez-Arantegui, M. S. Jimenez, E. Bolea, F. Laborda (2022). https://doi.org/10.1007/s00216-022-04215-z

  44. J. Buffle, K. J. Wilkinson, S. Stoll, M. Filella, J. Zhang (1998). https://doi.org/10.1021/es980217h

  45. H. F. Krug (2014). https://doi.org/10.1002/anie.201403367

  46. R. J. B. Peters, G. vn Bemmel, N. B. L. Milani, G. C. T. den Hertog, A. K. Undas, M. van der Lee, H. Bouwmeester (2018). https://doi.org/10.1016/j.scitotenv.2017.11.238

  47. R. Vogt, D. Mozhayeva, B. Steinhoff, A. Schardt, B. T. F. Spelz, A. Philippe, S. KURTZ, G. E. Schaumann, C. Engelhard, H. Schonherr, D. K. Lamatsch, J. Wanzenbock (2019). https://doi.org/10.1016/j.scitotenv.2019.134034

  48. T. Y. Sun, N. A. Bornh€oft, K. Hungerbühler, B. Nowack (2016) https://doi.org/10.1021/acs.est.5b05828

  49. B. W. Xiao, Y. Q. Zhang, X. L. Wang, M. Chen, B. B. Sun, T. Zhang, L. Y. Zhu (2019). https://doi.org/10.1039/C9EN00797K

  50. O. Choi, Z. Hu (2008). https://doi.org/10.1021/es703238h

Download references

Acknowledgements

This research was funded by key research and development plan of Shandong Province (No. 2020CXGC011406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruibao Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 400 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Jia, R., Xin, X. et al. Single particle ICP-MS combined with filtration membrane for accurate determination of silver nanoparticles in the real aqueous environment. ANAL. SCI. 39, 1349–1359 (2023). https://doi.org/10.1007/s44211-023-00347-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00347-z

Keywords

Navigation