Skip to main content
Log in

Nanoparticle tracking analysis characterisation and parts-per-quadrillion determination of fullerenes in river samples from Barcelona catchment area

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present work, the analysis of seven fullerenes (C60 and C70 fullerenes and five functionalised fullerenes) has been performed in river samples collected in the vicinities of Barcelona (Catalonia, NE of Spain). The results of 48 samples (25 river waters, 12 river sediments and 11 wastewater effluents) are presented. Extracts of river water, river sediments and wastewater effluents were analysed by liquid chromatography (LC), using a pyrenylpropyl group bonded silica based column, coupled to a high-resolution mass spectrometer (HRMS), using a dual ion source, atmospheric pressure photoionisation/atmospheric pressure chemical ionisation source (APPI/APCI). The novel methodology presents good chromatographic separation, excellent selectivity and instrumental limits of quantification (ILOQ) in the femtogram order. Method limits of quantification (MLOQ) ranged from 2.9 to 17 pg/l and from 3.2 to 31 pg/l in surface waters and wastewaters, respectively. In wastewater effluents, the sums of C60 and C70 ranged from 0.5 to 9.3 ng/l. In surface waters, C60 fullerene was the most ubiquitous compound, being detected in 100 % of the samples in concentrations from 31 pg/l to 4.5 ng/l, while C70 concentrations ranged from less than the method limits of detection (MLOD) to 1.5 ng/l. The presence of fullerenes in both the large particulate (diameter Ø > 450 nm) and the colloidal (Ø < 450 nm) fractions of surface waters should be noticed. In sediments, the concentrations of fullerenes were between the MLOD and 34.4 pg/g. In addition, nanoparticle tracking analysis (NTA) was used for the characterisation of water samples in terms of nanoparticle number concentration and size distribution. As far as our knowledge is concerned, this is the first time that NTA has been used for the characterisation of complex river waters with an environmental focus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  2. Farré M, Sanchís J, Barceló D (2011) TrAC Trends Anal Chem 30:517

    Article  Google Scholar 

  3. Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Environ Sci Technol 45:2562

    Article  CAS  Google Scholar 

  4. Montellano A, Da Ros T, Bianco A, Prato M (2011) Nanoscale 3:4035

    Article  CAS  Google Scholar 

  5. Agostinelli T, Campoy-Quiles M, Blakesley JC, Speller R, Bradley DDC, Nelson J (2008) Appl Phys Lett 93:203305

    Article  Google Scholar 

  6. Kwag DS, Park K, Oh KT, Lee ES (2013) Chem Commun 49:282

    Article  CAS  Google Scholar 

  7. Chikamatsu M, Itakura A, Yoshida Y, Azumi R, Yase K (2008) Chem Mater 20:7365

    Article  CAS  Google Scholar 

  8. Hou J, Guo X, in (2013) p. 17

  9. Goyal RN, Gupta VK, Sangal A, Bachheti N (2005) Electroanalysis 17:2217

    Article  CAS  Google Scholar 

  10. von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ, Koelmans AA, Horne N, Unrine JM (2012) Environ Toxicol Chem 31:32

    Article  Google Scholar 

  11. Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Eur J Pharm Biopharm 72:370

    Article  CAS  Google Scholar 

  12. Kim KT, Jang MH, Kim JY, Kim SD (2010) Sci Total Environ 408:5606

    Article  CAS  Google Scholar 

  13. Kim KT, Jang MH, Kim JY, Xing B, Tanguay RL, Lee BG, Kim SD (2012) Sci Total Environ 426:423

    Article  CAS  Google Scholar 

  14. Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughes JB (2005) Environ Toxicol Chem 24:2757

    Article  CAS  Google Scholar 

  15. Tao X, He Y, Zhang B, Chen Y, Hughes JB (2011) J Environ Sci 23:322

    Article  CAS  Google Scholar 

  16. Tervonen K, Waissi G, Petersen EJ, Akkanen J, Kukkonen JVK (2011) Environ Toxicol Chem 29:1072

    Google Scholar 

  17. Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006) Carbon 44:1112

    Article  Google Scholar 

  18. Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJJ (2007) Environ Toxicol Chem 26:976

    Article  CAS  Google Scholar 

  19. Azevedo Costa CL, Chaves IS, Ventura-Lima J, Ferreira JLR, Ferraz L, De Carvalho LM, Monserrat JM (2012) Comp Biochem Physiol C Toxicol Pharmacol 155:206

    Article  CAS  Google Scholar 

  20. Chen Z, Westerhoff P, Herckes P (2008) Environ Toxicol Chem 27:1852

    Article  CAS  Google Scholar 

  21. Bouchard D, Ma X (2008) J Chromatogr A 1203:153

    Article  CAS  Google Scholar 

  22. Wang C, Shang C, Westerhoff P (2010) Chemosphere 80:334

    Article  Google Scholar 

  23. Xiao Y, Chae S-R, Wiesner MR (2011) Chem Eng J 170:555

    Article  CAS  Google Scholar 

  24. Kolkman A, Emke E, Bäuerlein PS, Carboni A, Tran DT, ter Laak TL, van Wezel AP, de Voogt P (2013) Anal Chem 85:5867

    Article  CAS  Google Scholar 

  25. Farré M, Pérez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda Martí A, Barceló D (2010) J Hydrol 383:44

    Article  Google Scholar 

  26. Sanchís J, Božović D, Al-Harbi NA, Silva LF, Farré M, Barceló D (2013) Anal Bioanal Chem 405:5915

    Article  Google Scholar 

  27. Isaacson CW, Usenko CY, Tanguay RL, Field JA (2007) Anal Chem 79:9091

    Article  CAS  Google Scholar 

  28. Sanchís J, Berrojalbiz N, Caballero G, Dachs J, Farré M, Barceló D (2012) Environ Sci Technol 46:1335

    Article  Google Scholar 

  29. Sanchís J, Martínez E, Ginebreda A, Farré M, Barceló D (2013) Sci Total Environ 443:530

    Article  Google Scholar 

  30. van Wezel AP, Morinière V, Emke E, ter Laak T, Hogenboom AC (2011) Environ Int 37:1063

    Article  Google Scholar 

  31. Núñez Ó, Gallart-Ayala H, Martins CPB, Moyano E, Galceran MT (2012) Anal Chem 84:5316

    Article  Google Scholar 

  32. Xie SY, Deng SL, Yu LJ, Huang RB, Zheng LS (2001) J Chromatogr A 932:43

    Article  CAS  Google Scholar 

  33. Pakarinen K, Petersen EJ, Leppãnen MT, Akkanen J, Kukkonen JVK (2011) Environ Pollut 159:3750

    Article  CAS  Google Scholar 

  34. Chen HC, Ding WH (2012) J Chromatogr A 1223:15

    Article  CAS  Google Scholar 

  35. E. Comission in, (2002) 2002/657/EC: “Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results”

  36. Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G, Capracotta S, Magdolenova Z, Horev-Azaria L, Dybowska A (2013) J Nanoparticle Res 15:1

    Article  Google Scholar 

  37. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Environ Sci Technol 43:9216

    Article  CAS  Google Scholar 

  38. Gasith A, Resh VH (1999) Annu Rev Ecol Syst 30:51

    Article  Google Scholar 

  39. Navarro-Ortega A, Acuña V, Batalla RJ, Blasco J, Conde C, Elorza FJ, Elosegi A, Francés F, La-Roca F, Muñoz I (2011) Environ Sci Pollut Res 19:918

    Article  Google Scholar 

  40. Zhu X, Zhu L, Lang Y, Chen Y (2008) Environ Toxicol Chem 27:1979

    Article  CAS  Google Scholar 

  41. Howard JB, McKinnon JT, Johnson ME, Makarovsky Y, Lafleur AL (1992) J Phys Chem 96:6657

    Article  CAS  Google Scholar 

  42. Quik JTK, Velzeboer I, Wouterse M, Koelmans AA, van de Meent D (2014) Water Res 48:269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministerio de Ciencia e Innovación through the project Nano-Trojan CTM2011-24051 and by the Generalitat de Catalunya (Consolidated Research Groups “2014 SGR 418 - Water and Soil Quality Unit” and 2014 SGR 291 - ICRA). The authors would like to express their deepest gratitude to the WWTPs involved in this paper, for their uninterested collaboration with the Nano-Trojan project. Roser Chaler and Dori Fanjul from the IDAEA-CSIC mass spectrometry service are acknowledged for their helpful assistance with the HPLC–HRMS instrumentation.

Conflict of interest

The authors state that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinella Farré.

Additional information

Published in the topical collection Advances in LC-MS/MS Analysis with guest editors Damià Barceló and Mira Petrovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchís, J., Bosch-Orea, C., Farré, M. et al. Nanoparticle tracking analysis characterisation and parts-per-quadrillion determination of fullerenes in river samples from Barcelona catchment area. Anal Bioanal Chem 407, 4261–4275 (2015). https://doi.org/10.1007/s00216-014-8273-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8273-y

Keywords

Navigation