Skip to main content
Log in

Perceiving the chemical language of Gram-negative bacteria: listening by high-resolution mass spectrometry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Gram-negative bacteria use N-acylhomoserine lactones (AHLs) as their command language to coordinate population behavior during invasion and colonization of higher organisms. Although many different bacterial bioreporters are available for AHLs monitoring, in which a phenotypic response, e.g. bioluminescence, violacin production, and β-galactosidase activity, is exploited, mass spectrometry (MS) is the most versatile detector for rapid analysis of AHLs in complex microbial samples, with or without prior separation steps. In this paper we critically review recent advances in the application of high-resolution MS to analysis of the quorum sensing (QS) signaling molecules used by Gram-negative bacteria, with much emphasis on AHLs. A critical review of the use of bioreporters in the study of AHLs is followed by a short methodological survey of the capabilities of high-resolution mass spectrometry (HRMS), including Fourier-transform ion cyclotron resonance (FTICR) MS and quadrupole time-of-flight (qTOF) MS. Use of infusion electrospray ultrahigh-resolution FTICR MS (12 Tesla) enables accurate mass measurements for determination of the elemental formulas of AHLs in Acidovorax sp. N35 and Burkholderia ubonensis AB030584. Results obtained by coupling liquid chromatography with a hybrid quadrupole linear ion trap-FTICR mass spectrometer (LC–LTQ-FTICRMS, 7-T) for characterization of acylated homoserine lactones in the human pathogen Pseudomonas aeruginosa are presented. UPLC–ESI-qTOF MS has also proved to be suitable for identification of 3O-C10HSL in Pseudomonas putida IsoF cell culture supernatant. Aspects of sample preparation and the avoidance of analytical pitfalls are also emphasized.

LC separation and FTICR MS identification of 3-oxo-C12-HSL in bacterial isolates of P. aeruginosa (strain ATCC 9027)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

AHLs:

N-Acyl-homoserine lactones

amu:

Atomic mass unit expressed in Da

DPD:

4,5-Dihydroxy-2,3-pentanedione

EI:

Electron impact

ESI:

Electrospray ionization

FA:

Formic acid

FTICR:

Fourier-transform ion cyclotron resonance

HRMS:

High-resolution mass spectrometry

LC:

High-performance liquid chromatography

LTQ:

Quadrupole linear ion trap

MeOH:

Methanol

MS:

Mass spectrometry

m/z :

Mass over charge

QS:

Quorum sensing

qTOF:

Quadrupole time-of-flight

UPLC:

Ultra-pressure liquid chromatography

References

  1. Fuqua C, Greenberg EP (2002) Nat Rev Mol Cell Biol 3:685

    Article  CAS  Google Scholar 

  2. Bassler BL, Losick R (2006) Cell 125:237

    Article  CAS  Google Scholar 

  3. Williams P (2007) Microbiology 153:3923

    Article  CAS  Google Scholar 

  4. McFall-Ngai MJ (2000) Comp Biochem Physiol A Mol Integr Physiol 126:471

    Article  CAS  Google Scholar 

  5. Dunlap PV (1999) J Mol Microbiol Biotechnol 1:5

    CAS  Google Scholar 

  6. Nealson KH, Platt T, Hastings JW (1970) J Bacteriol 104:313

    CAS  Google Scholar 

  7. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Biochemistry 20:2444

    Article  CAS  Google Scholar 

  8. Schauder S, Shokat K, Surette MG, Bassler BL (2001) Mol Microbiol 41:463

    Article  CAS  Google Scholar 

  9. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Nature 415:545

    Article  CAS  Google Scholar 

  10. Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM (2004) Mol Cell 15:677

    Article  CAS  Google Scholar 

  11. Winzer K, Hardie KR, Burgess N, Doherty N, Kirke D, Holden MTG, Linforth R, Cornell KA, Taylor AJ, Hill PJ, Williams P (2002) Microbiology 148:909

    CAS  Google Scholar 

  12. Miller MB, Bassler BL (2001) Annu Rev Microbiol 55:165

    Article  CAS  Google Scholar 

  13. Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) J Bacteriol 179:3127

    CAS  Google Scholar 

  14. Waters CM, Bassler BL (2005) Ann Rev Cell Dev Biol 21:319

    Article  CAS  Google Scholar 

  15. Rasmussen TB, Givskov M (2006) Microbiology 152:895

    Article  CAS  Google Scholar 

  16. Rasmussen TB, Givskov M (2006) Int J Med Microbiol 296:149

    Article  CAS  Google Scholar 

  17. Gould TA, Herman J, Krank J, Murphy RC, Churchill MEA (2006) J Bacteriol 188:773

    Article  CAS  Google Scholar 

  18. Kumari A, Pasini P, Daunert S (2008) Anal Bioanal Chem 391:1619

    Article  CAS  Google Scholar 

  19. Morin D, Grasland B, Vallee-Rehel K, Dufau C, Haras D (2003) J Chromatogr A 1002:79

    Article  CAS  Google Scholar 

  20. Hmelo L, Van Mooy BSA (2009) Aquat Microb Ecol 54:127

    Article  Google Scholar 

  21. Ortori CA, Atkinson S, Chhabra SR, Camara M, Williams P, Barrett DA (2007) Anal Bioanal Chem 387:497

    Article  CAS  Google Scholar 

  22. Ortori CA, Dubern JF, Chhabra SR, Camara M, Hardie K, Williams P, Barrett DA (2011) Anal Bioanal Chem 399:839

    Article  CAS  Google Scholar 

  23. May AL, Eisenhauer ME, Coulston KS, Campagna SR (2012) Anal Chem 84:1243

    Article  CAS  Google Scholar 

  24. Cataldi TRI, Bianco G, Abate S (2008) J Mass Spectrom 43:82

    Article  CAS  Google Scholar 

  25. Cataldi TRI, Bianco G, Abate S (2009) J Mass Spectrom 44:182

    Article  CAS  Google Scholar 

  26. Prashanth SN, Bianco G, Cataldi TRI, Iacobellis NS (2011) J Agric Food Chem 59:11461

    Article  CAS  Google Scholar 

  27. Fekete A, Frommberger M, Rothballer M, Xiaojing L, Matthias E, Fekete J, Hartmann A, Eberl L, Schmitt-Kopplin P (2007) Anal Bioanal Chem 387:455

    Article  CAS  Google Scholar 

  28. Li X, Chen G, Fekete J, Yang F, Fekete A, Englmann M, Schmitt-Kopplin P (2007) J Liq Chromatogr Relat Technol 30:2515

    Article  CAS  Google Scholar 

  29. Götz C, Fekete A, Gebefuegi I, Forczek ST, Fuksová K, Li X, Englmann M, Gryndler M, Hartmann A, Matucha M, Schmitt-Kopplin P, Schröder P (2007) Anal Bioanal Chem 389:1447

    Article  Google Scholar 

  30. Diggle S, Crusz S, Cámara M (2007) Curr Biol 17:R907

    Article  CAS  Google Scholar 

  31. Williams P, Winzer K, Chan W, Camara M (2007) Phil Trans R Soc B 362:1119

    Article  CAS  Google Scholar 

  32. Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Chem Rev 111:28

    Article  CAS  Google Scholar 

  33. Bassler BL (2002) Cell 109:421

    Article  CAS  Google Scholar 

  34. Xavier KB, Bassler BL (2005) J Bacteriol 187:238

    Article  CAS  Google Scholar 

  35. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) FEMS Microbiol Rev 25:365

    Article  CAS  Google Scholar 

  36. Minogue TD, von Trebra MW, Bernhard F, von Bodman SB (2002) Mol Microbiol 44:1625

    Article  CAS  Google Scholar 

  37. Eberl L (1999) Syst Appl Microbiol 22:493

    Article  CAS  Google Scholar 

  38. Moré MI, Finger LD, Stryker JL, Fuqua C, Eberhard A, Winans SC (1996) Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272:1655

    Article  Google Scholar 

  39. Schaefer AL, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1996) Proc Natl Acad Sci U S A 93:9505

    Article  CAS  Google Scholar 

  40. Urbanowski ML, Lostroh CP, Greenberg EP (2004) J Bacteriol 186:631

    Article  CAS  Google Scholar 

  41. Parsek MR, Val DL, Hanzelka BL, Cronan JE, Greenberg EP (1999) Proc Natl Acad Sci U S A 96:4360

    Article  CAS  Google Scholar 

  42. Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, Williams P (1995) Mol Microbiol 17:333

    Article  CAS  Google Scholar 

  43. Zhang RG, Pappas T, Brace JL, Miller PC, Oulmassov T, Molyneaux JM, Anderson JC, Bashkin JK, Winans SC, Joachimiak A (2002) Nature 417:971

    Article  CAS  Google Scholar 

  44. Bottomley MJ, Muraglia E, Bazzo R, Carfi A (2007) J Biol Chem 282:13592

    Article  CAS  Google Scholar 

  45. Lyczak JB, Cannon CL, Pier GB (2002) Clin Microbiol Rev 15:194

    Article  CAS  Google Scholar 

  46. Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Chapon V, Bycroft BW, Salmond GPC, Bycroft BW, Lazdunski A, Stewart GSAB, Williams P (1995) Proc Natl Acad Sci U S A 92:9427

    Article  CAS  Google Scholar 

  47. Chambers CE, Visser MB, Schwab U, Sokol PA (2005) FEMS Microbiol Lett 244:297

    Article  CAS  Google Scholar 

  48. Kumari A, Pasini P, Deo SK, Flomenhoft D, Shashidhar H, Daunert S (2006) Anal Chem 78:7603

    Article  CAS  Google Scholar 

  49. Steindler L, Venturi V (2007) FEMS Microbiol Lett 266:1

    Article  CAS  Google Scholar 

  50. Venturi V (2006) FEMS Microbiol Rev 30:274

    Article  CAS  Google Scholar 

  51. Frommberger M, Schmitt-Kopplin P, Menzinger F, Albrecht V, Schmid M, Eberl L, Hartmann A, Kettrup A (2003) Electrophoresis 24:3067

    Article  CAS  Google Scholar 

  52. Cataldi TRI, Bianco G, Frommberger M, Schmitt-Kopplin P (2004) Rapid Commun Mass Spectrom 18:1341

    Article  CAS  Google Scholar 

  53. Rani S, Kumar A, Malik AK, Schmitt-Kopplin P (2011) Am J Anal Chem 2:294

    Article  CAS  Google Scholar 

  54. Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom Rev 17:1

    Article  CAS  Google Scholar 

  55. Heeren RMA, Kleinnijenhuis AJ, McDonnell LA, Mize TH (2004) Anal Bioanal Chem 378:1048

    Article  CAS  Google Scholar 

  56. Guan S, Marshall AG, Scheppele SE (1996) Anal Chem 68:46

    Article  CAS  Google Scholar 

  57. Morris HR, Paxton T, Dell A, Langhorne J, Berg M, Bordoli R, Hoyes J, Bateman RH (1996) Rapid Commun Mass Spectrom 10:889

    Article  CAS  Google Scholar 

  58. Chernushevich IV, Loboda AV, Thomson BA (2001) J Mass Spectrom 36:849

    Article  CAS  Google Scholar 

  59. Tong H, Bell D, Tabei K, Siegel MM (1999) J Am Soc Mass Spectrom 10:1174

    Article  CAS  Google Scholar 

  60. Kind T, Fiehn O (2006) BMC Bioinforma 7:234

    Article  Google Scholar 

  61. Feng X, Siegel MM (2007) Anal Bioanal Chem 389:1341

    Article  CAS  Google Scholar 

  62. Miura D, Tsuji Y, Takahashi K, Wariishi H, Saito K (2010) Anal Chem 82:5887

    Article  CAS  Google Scholar 

  63. Liu T, Belov ME, Jaitly N, Qian W-J, Smith RD (2007) Chem Rev 107/8:3621

    Article  Google Scholar 

  64. Charlton TS, de Nys R, Netting A, Kumar N, Hentzer M, Givskov M, Kjelleberg S (2000) Environ Microbiol 2:530

    Article  CAS  Google Scholar 

  65. Frommberger M, Schmitt-Kopplin P, Ping G, Frisch H, Schmid M, Zhang Y, Hartmann A, Kettrup A (2004) Anal Bioanal Chem 378:1014

    Article  CAS  Google Scholar 

  66. Li X, Fekete A, Englmann M, Götz C, Rothballer M, Buddrus K, Cai C, Schröder P, Hartmann A, Chen G, Schmitt-Kopplin P (2006) J Chromatogr A 1134:186

    Article  CAS  Google Scholar 

  67. Li X, Fekete A, Englmann M, Frommberger M, Lv S, Chen G, Schmitt-Kopplin P (2007) Anal Bioanal Chem 389:1439

    Article  CAS  Google Scholar 

  68. Bruhn JB, Christensen AB, Flodgaard LR, Nielsen KF, Larsen TO, Givskov M, Gram L (2004) Appl Environ Microbiol 70:4293

    Article  CAS  Google Scholar 

  69. Englmann M, Fekete A, Kuttler C, Frommberger M, Li X, Gebefuegi I, Fekete J, Schmitt-Kopplin P (2007) J Chromatogr A 1160:184

    Article  CAS  Google Scholar 

  70. Wang LH, Wenig LX, Dong YH, Zhang LH (2004) J Biol Chem 279:13645

    Article  CAS  Google Scholar 

  71. Cui Y, Frey RL, Ferry JL, Lee Ferguson P (2009) Rapid Commun Mass Spectrom 23:1212

    Article  CAS  Google Scholar 

  72. Engebrecht J, Silverman M (1984) Proc Natl Acad Sci U S A 81:4154

    Article  CAS  Google Scholar 

  73. Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GS (1997) J Bacteriol 179:5271

    CAS  Google Scholar 

  74. Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) J Bacteriol 181:748

    CAS  Google Scholar 

  75. Smith JN, Ahmer BMM (2003) J Bacteriol 185:1357

    Article  CAS  Google Scholar 

  76. Riedel K, Ohnesorg T, Krogfelt KA, Hansen TS, Omori K, Givskov M, Eberl L (2001) J Bacteriol 183:1805

    Article  CAS  Google Scholar 

  77. Hao G, Burr TJ (2006) J Bacteriol 188:2173

    Article  CAS  Google Scholar 

  78. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Microbiology 143:3703

    Article  CAS  Google Scholar 

  79. Zhu J, Beaber JW, More MI, Fuqua C, Eberhard A, Winans SC (1998) J Bacteriol 180:5398

    CAS  Google Scholar 

  80. Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GS (1998) FEMS Microbiol Lett 163:185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the anonymous reviewers for their valuable and insightful suggestions. This work was performed by use of the instrumental facilities of CIGAS Center funded by the EU (project no. 2915/12), the Regione Basilicata, and the University of Basilicata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso R. I. Cataldi.

Additional information

Published in the special issue Analytical Science in Italy with guest editor Aldo Roda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 216 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cataldi, T.R.I., Bianco, G., Fonseca, J. et al. Perceiving the chemical language of Gram-negative bacteria: listening by high-resolution mass spectrometry. Anal Bioanal Chem 405, 493–507 (2013). https://doi.org/10.1007/s00216-012-6371-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6371-2

Keywords

Navigation