Skip to main content
Log in

FTICR-MS applications for the structure determination of natural products

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Natural products are a source of unique chemical entities with specific biological activities of great value to the pharmaceutical industry. However, the determination of unknown structures is usually time consuming and often becomes a bottleneck in the effort to develop natural products into effective drugs. The high-performance features of high magnetic field FTMS have greatly alleviated the structural elucidation bottleneck to meet increasingly shorter discovery timelines for drug candidates based on natural products. The high-performance features of high field FTMS include unsurpassed mass measurement accuracy for elemental formula determination, ultra-high mass resolution for component separation, the ability to perform multiple levels of tandem mass spectrometry for structural elucidation, and moderate sensitivity for limited supply of isolates. A number of applications utilizing these properties of FTMS have been reported recently for the structural elucidation of novel natural product structures originating from terrestrial and marine microorganisms. In this review, FTMS methods and their applications for the structural elucidation and characterization of natural products will be reviewed.

Molecular structure and positive ion mode nanoelectrospray FTICR mass spectrum of methylspirastrellolide A (3). The inset shows the isotopic distribution with high abundance of the A + 2 peak, but less than the abundance of the A + 1 peak. The resolved isotopic fine structure of the A + 2 peak reveals the presence of one chlorine atom based on accurate mass assignment and the measured abundance ratio between the resolved 37Cl peak and the monoisotopic peak

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM, Snader KM (2003) J Nat Prod 66:1022–1037

    Article  CAS  Google Scholar 

  2. Koehn FE, Carter GT (2005) Nat Rev Drug Discov 4:206–220

    Article  CAS  Google Scholar 

  3. Singh SB, Barrett JF (2006) Biochem Pharmacol 71:1006–1015

    Article  CAS  Google Scholar 

  4. Feher M, Schmidt JM (2003) J Chem Inf Comput Sci 43:218–227

    Article  CAS  Google Scholar 

  5. Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom Rev 17:1–35

    Article  CAS  Google Scholar 

  6. Amster IJ (1996) J Mass Spectrom 31:1325–1337

    Article  CAS  Google Scholar 

  7. Marshall AG, Verdun FR (1990) Fourier transforms in NMR, optical, and mass spectrometry: a user’s handbook. Elsevier, Amsterdam

    Google Scholar 

  8. Heeren RMA, Kleinnijenhuis AJ, McDonnell LA, Mize TH (2004) Anal Bioanal Chem 378:1048–1058

    Article  CAS  Google Scholar 

  9. Harvey A (2000) Drug Discovery Today 5:294–300

    Article  Google Scholar 

  10. Sashidhara KV, Rosaiah JN (2007) Nat Prod Commun 2:193–202

    CAS  Google Scholar 

  11. Konishi Y, Kiyota T, Draghici C, Gao JM, Yeboah F, Acoca S, Jarussophon S, Purisima E (2007) Anal Chem 79:1187–1197

    Article  CAS  Google Scholar 

  12. Lawrence EO, Livingston MS (1932) Phys Rev 40:19–35

    Article  CAS  Google Scholar 

  13. Comisarow MB, Marshall AG (1974) Chem Phys Lett 25:282–283

    Article  CAS  Google Scholar 

  14. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Science 246:64–71

    Article  CAS  Google Scholar 

  15. Karas MI, Bachman D, Bahr U, Hillenkamp F (1987) Int J Mass Spectrom Ion Proc 78:53–68

    Article  CAS  Google Scholar 

  16. Palmblad M, Hakansson K, Hakansson P, Feng X, Cooper HJ, Giannakopulos AE, Derrick PJ (2000) Eur J Mass Spectrom 6:267–275

    Article  CAS  Google Scholar 

  17. Akashi S, Naito Y, Takio K (1999) Anal Chem 71:4974–4980

    Article  CAS  Google Scholar 

  18. Roepstorff P, Fohlman J (1984) J Biomed Mass Spectrom 6:601

    Article  Google Scholar 

  19. Gauthier JW, Trautman TR, Jacobson DB (1991) Anal Chim Acta 246:211–225

    Article  CAS  Google Scholar 

  20. Little DP, Speir JP, Senko MW, O’Cornnor PB, McLafferty FW (1994) Anal Chem 66:2809–2815

    Article  CAS  Google Scholar 

  21. Zubarev RA, Kelleher NL, McLafferty FW (1998) J Am Chem Soc 120:3265–3266

    Article  CAS  Google Scholar 

  22. Kelleher NL, Zubarev RA, Bush K, Furie B, Furie BC, McLafferty FW, Walsh CT (1999) Anal Chem 71:4250–4253

    Article  CAS  Google Scholar 

  23. Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Anal Chem 71:4431–4436

    Article  CAS  Google Scholar 

  24. Guan S, Marshall AG, Scheppele SE (1996) Anal Chem 68:46–71

    Article  CAS  Google Scholar 

  25. Grosshans PB, Marshall AG (1990) Int J Mass Spectrom Ion Proc 100:347–379

    Article  CAS  Google Scholar 

  26. Zhang LK, Rempel D, Pramanik BN, Gross ML (2005) Mass Spectrom Rev 24:286–309, 2005

    Article  CAS  Google Scholar 

  27. de Koning LJ, Nibbering NMM, Van Orden SL, Laukien FH (1997) Int J Mass Spectrom 165:209–219

    Article  Google Scholar 

  28. Kruppa G, Schnier PD, Tabei K, Van Orden S, Siegel MM (2002) Anal Chem 74:3877–3886

    Article  CAS  Google Scholar 

  29. Wu Q (1999) Anal Chem 70:865–872

    Article  Google Scholar 

  30. Tong H, Bell D, Tabei K, Siegel MM (1999) J Am Soc Mass Spectrom 10:1174–1187

    Article  CAS  Google Scholar 

  31. Kind T, Fiehn O (2006) BMC Bioinformatics 7:234

    Article  CAS  Google Scholar 

  32. McLafferty FW, Turecek F (1993) Interpretation of mass spectra, 4th edn. University Science Books, Mill Valley, CA

    Google Scholar 

  33. Huang J, Tiedemann PW, Land DP, McIver RT, Hemminger JC (1994) Int J Mass Spectrom Ion Proc 134:11–21

    Article  CAS  Google Scholar 

  34. Shi SDH, Hendrickson CL, Marshall AG (1998) Proc Natl Acad Sci USA 95:11532–11537

    Article  CAS  Google Scholar 

  35. Siegel MM, Tabei K, Lambert F, Candela L, Zoltan B (1998) J Am Soc Mass Spectrom 9:1196–1203

    Article  CAS  Google Scholar 

  36. Davis RA, Mangalindan GC, Bojo ZP, Antemano RR, Rodriguez NO, Concepcion GP, Samson SC, de Guzman D, Cruz LJ, Tasdemir D, Harper MK, Feng X, Carter GT, Ireland CM (2004) J Org Chem 69:4170–4176

    Article  CAS  Google Scholar 

  37. Williams DE, Roberge M, Van Soest R, Andersen RJ (2003) J Am Chem Soc 125:5296–5297

    Article  CAS  Google Scholar 

  38. Williams DE, Lapawa M, Feng X, Tarling T, Roberge M, Andersen RJ (2004) Org Lett 6:2607–2610

    Article  CAS  Google Scholar 

  39. Zubarev RA, Hakansson P, Sundqvist B (1996) Anal Chem 68:4060–4063

    Article  CAS  Google Scholar 

  40. Summers MY, Kong F, Feng X, Siegel MM, Janso JE, Graziani EI, Carter GT (2007) J Nat Prod 70:391–396

    Article  CAS  Google Scholar 

  41. Breci LA, Tabb DL, Yates JR III, Wysocki VH (2003) Anal Chem 75:1963–1971

    Article  CAS  Google Scholar 

  42. Laird DW, LaBarbera DV, Feng X, Bugni TS, Harper MK, Ireland CM (2007) J Nat Prod 70:741–746

    Article  CAS  Google Scholar 

  43. He M, Bradley H, Mia S, Feng X, Hucul J (2006) Gene 377:109–118

    Article  CAS  Google Scholar 

  44. Charan RD, Schlingmann G, Bernan VS, Feng X, Carter GT (2006) J Nat Prod 69:29–33

    Article  CAS  Google Scholar 

  45. Salituro GM, Zink DL, Dahl A, Nielsen J, Wu E, Huang L, Kastner C, Dumont FJ (1995) Tetrahedron Lett 36:997–1000

    Article  CAS  Google Scholar 

  46. Carter GT, Nietsche JA, Goodman JJ, Torrey MJ, Dunne TS, Borders DB, Testa RT (1987) J Antibiot 40:233–236

    CAS  Google Scholar 

  47. Zhang X, Parry RJ (2007) Antimicrob Agents Chemother 51:946–957

    Article  CAS  Google Scholar 

  48. Kers JA, Wach MJ, Krasnoff SB, Widom J, Cameron KD, Bukhalid RA, Gibson DM, Crane BR, Loria R (2004) Nature 429:79–82

    Article  CAS  Google Scholar 

  49. McDonald LA, Barbieri LR, Carter GT, Lenoy E, Lotvin J, Petersen PJ, Siegel MM, Singh G, Williamson RT (2002) J Am Chem Soc 124:10260–10261

    Article  CAS  Google Scholar 

  50. McDonald LA, Barbieri LR, Carter GT, Kruppa G, Feng X, Lotvin JA, Siegel MM (2003) Anal Chem 75:2730–2739

    Article  CAS  Google Scholar 

  51. Dorrestein PC, Kelleher NL (2006) Nat Prod Rep 23:893–918

    Article  CAS  Google Scholar 

  52. Cummins LL, Chen S, Blyn LB, Sannes–Lowery KA, Drader JJ, Griffey RH, Hofstadler SA (2003) J Nat Prod 66:1186–1190

    Article  CAS  Google Scholar 

  53. Huang N, Siegel MM, Kruppa GH, Laukien FH (1999) J Am Soc Mass Spectrom 10:1166–1173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the help provided by Drs Mark Tischler, Frank E. Koehn, and Guy T. Carter in critically reviewing the manuscript. The contributions to structural elucidation by our colleagues at the Wyeth Research Natural Products Department are gratefully acknowledged. We are indebted to Drs Damian W. Laird, Tim S. Bugni, Rohan A. Davis and Chris M. Ireland at University of Utah and Drs David E. Williams and Raymond J. Andersen at University of British Columbia for providing challenging natural product structure determination problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xidong Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, X., Siegel, M.M. FTICR-MS applications for the structure determination of natural products. Anal Bioanal Chem 389, 1341–1363 (2007). https://doi.org/10.1007/s00216-007-1468-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1468-8

Keywords

Navigation