Skip to main content
Log in

Simultaneous quantitative profiling of N-acyl-l-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An LC-MS/MS method, using positive mode electrospray ionization, for the simultaneous, quantitative and targeted profiling of the N-acyl-l-homoserine lactone (AHL) and 2-alkyl 4-(1H)-quinolone (AQ) families of bacterial quorum-sensing signaling molecules (QSSMs) is presented. This LC-MS/MS technique was applied to determine the relative molar ratios of AHLs and AQs produced by Pseudomonas aeruginosa and the consequences of mutating individual or multiple QSSM synthase genes (lasI, rhlI, pqsA) on AHL and AQ profiles and concentrations. The AHL profile of P. aeruginosa was dominated by N-butanoyl-l-homoserine lactone (C4-HSL) with lesser concentrations of N-hexanoyl-l-homoserine lactone (C6-HSL) and 3-oxo-substituted longer chain AHLs including N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL). The AQ profile of P. aeruginosa comprised the C7 and C9 long alkyl chain AQs including 2-heptyl-4-hydroxyquinoline (HHQ), 2-nonyl-4-hydroxyquinoline, the “pseudomonas quinolone signal” (2-heptyl-3-hydroxy-4-quinolone) and the N-oxides, 2-heptyl-4-hydroxyquinoline N-oxide and 2-nonyl-4-hydroxyquinoline N-oxide. Application of the method showed significant effects of growth medium type on the ratio and the nature of the QSSMs synthesized and the dramatic effect of single, double and triple mutations in the P. aeruginosa QS synthase genes. The LC-MS/MS methodology is applicable in organisms where either or both AHL and AQ QSSMs are produced and can provide comprehensive profiles and concentrations from a single sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Williams P, Winzer K, Chan W, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Phil Trans Roy Soc B 362:1119–1134

    Article  CAS  Google Scholar 

  2. Diggle SP, Cornelis P, Williams P, Camara M (2006) 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296:83–91

    Article  CAS  Google Scholar 

  3. Chhabra SR, Philipp B, Eberl L, Givskov M, Williams P, Camara M (2005) In: S. Schulz (Ed.), Chemistry of pheromones and other semiochemicals, vol. 240. Springer Verlag. pp. 279-315

  4. Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Chapon V, Bycroft BW, Salmond GPC, Lazdunski A, Stewart GSAB, Williams P (1995) Multiple quorum sensing modulons interactively regulate virulence and secondary metabolism in Pseudomonas aeruginosa: identification of the signal molecules N-butanoyl-l-homoserine lactone and N-hexanoyl-l-homoserine lactone. Proc Nat Acad Sci USA 92:9427–9431

    Article  CAS  Google Scholar 

  5. Charlton TS, de Nys R, Netting A, Kumar N, Hentzer M, Givskov M, Kjelleberg S (2000) A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography–mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2:530–541

    Article  CAS  Google Scholar 

  6. Smith RS, Iglewski BH (2003) Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 112:1460–1465

    CAS  Google Scholar 

  7. Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    Article  CAS  Google Scholar 

  8. Hays EE, Wells IC, Katzman PA, Cain CK, Jacobs FA, Thayer SA, Doisy EA, Gaby WL, Roberts EC, Muir RD, Carroll CJ, Jones LR, Wade NJ (1945) Antibiotic substances produced by Pseudomonas aeruginosa. J Biol Chem 159:725–750

    CAS  Google Scholar 

  9. Cornforth JW, James AT (1956) Structure of a naturally occurring antagonist of dihydrostreptomycin. Biochem J 63:124–130

    CAS  Google Scholar 

  10. Wells IC (1952) Antibiotic substances produced by Pseudomonas aeruginosa. Synthesis of Pyo Ib. Pyo Ic, and Pyo III. J Biol Chem 196:331–340

    CAS  Google Scholar 

  11. Long RA, Qureshi A, Faulkner DJ, Azam F (2003) 2-n-Pentyl-4-quinolinol produced by a marine Alteromonas sp. and its potential ecological and biogeochemical roles. Appl Environ Microbiol 69:568–576

    Article  CAS  Google Scholar 

  12. Machan ZA, Taylor GW, Pitt TL, Cole PJ, Wilson R (1992) 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J Antimicrob Chemother 30:615–623

    Article  CAS  Google Scholar 

  13. Bredenbruch F, Geffers R, Nimtz M, Buer J, Haussler S (2006) The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8:1318–1329

    Article  CAS  Google Scholar 

  14. Royt PW, Honeychuck RV, Ravich V, Ponnaluri P, Pannell LK, Buyer JS, Chandhoke V, Stalick WM, DeSesso LC, Donohue S, Ghei R, Relyea JD, Ruiz R (2001) 4-Hydroxy-2-nonylquinoline: a novel iron chelator isolated from a bacterial cell membrane. Bioorg Chem 29:387–397

    Article  CAS  Google Scholar 

  15. Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96

    Article  CAS  Google Scholar 

  16. Hooi DS, Bycroft BW, Chhabra SR, Williams P, Pritchard DI (2004) Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules. Infect Immun 72:6463–6470

    Article  CAS  Google Scholar 

  17. Kim K, Kim YU, Koh BH, Hwang SS, Kim SH, Lepine F, Cho YH, Lee GR (2010) HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-kappaB pathway. Immunology 129:578–588

    Article  CAS  Google Scholar 

  18. Lépine F, Milot S, Déziel E, He J, Rahme LG (2004) Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom 15:862–869

    Article  Google Scholar 

  19. Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43

    Article  CAS  Google Scholar 

  20. McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–270

    Article  CAS  Google Scholar 

  21. Xiao G, Déziel E, He J, Lépine F, Lesic B, Castonguay M-H, Milot S, Tampakaki AP, Stachel SE, Rahme LG (2006) MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62:1689–1699

    Article  CAS  Google Scholar 

  22. Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, Chhabra SR, Camara M, Williams P (2006) Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 13:701–710

    Article  CAS  Google Scholar 

  23. Vial L, Lepine F, Milot S, Groleau MC, Dekimpe V, Woods DE, Deziel E (2008) Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J Bacteriol 190:5339–5352

    Article  CAS  Google Scholar 

  24. Kawaguchi T, Chen YP, Norman RS, Decho AW (2008) Rapid screening of quorum-sensing signal N-acyl homoserine lactones by an in vitro cell-free assay. Appl Environ Microbiol 74:3667–3671

    Article  CAS  Google Scholar 

  25. Fletcher MP, Diggle SP, Camara M, Williams P (2007) Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nat Protoc 2:1254–1262

    Article  CAS  Google Scholar 

  26. Winson MK, Swift S, Hill PJ, Sims CM, Griesmayr G, Bycroft BW, Williams P, Stewart G (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163:193–202

    Article  CAS  Google Scholar 

  27. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Cámara M, Daykin M, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiol SGM 143:3703–3711

    Article  CAS  Google Scholar 

  28. Shaw PD, Gao P, Daly SL, Cha C, Cronan JE Jr, Rinehaert KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Nat Acad Sci USA 94:6036–6041

    Article  CAS  Google Scholar 

  29. Michels JJ, Allain EJ, Borchardt SA, Hu P, McCoy WF (2000) Degradation pathway of homoserine lactone bacterial signal molecules by halogen antimicrobials identified by liquid chromatography with photodiode array and mass spectrometric detection. J Chromatrogr A 898:153–165

    Article  CAS  Google Scholar 

  30. Milton DL, Hardman A, Camara M, Chhabra SR, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-l-homoserine lactone. J Bacteriol 179:3004

    CAS  Google Scholar 

  31. Morin D, Grasland B, Vallée-Réhel K, Dufau C, Haras D (2003) On-line high-performance liquid chromatography-mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. J Chromatogr A 1002:79–92

    Article  CAS  Google Scholar 

  32. Lin Y-H, Xu J-L, Hu J, Wang L-H, Ong SL, Leadbetter JR, Zhang L-H (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860

    Article  Google Scholar 

  33. Gould TA, Herman J, Krank J, Murphy RC, Churchill MEA (2006) Specificity of acyl-homoserine lactone synthases examined by mass spectrometry. J Bacteriol 188:773–783

    Article  CAS  Google Scholar 

  34. Ortori CA, Atkinson S, Chhabra SR, Cámara M, Williams P, Barrett DA (2007) Comprehensive profiling of n-acyl homoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole-linear ion trap mass spectrometry. Anal Bioanal Chem 387:497–511

    Article  CAS  Google Scholar 

  35. Cataldi TRI, Bianco G, Abate S (2008) Profiling of N-acyl-homoserine lactones by liquid chromatography coupled with electrospray ionization and a hybrid quadrupole linear ion-trap and Fourier-transform ion-cyclotron-resonance mass spectrometry (LC-ESI-LTQ-FTICR-MS). J Mass Spectrom 43:82–96

    Article  CAS  Google Scholar 

  36. Taylor GW, Machan ZA, Mehmet S, Cole PJ, Wilson R (1995) Rapid identification of 4-hydroxy-2-alkylquinolines produced by Pseudomonas aeruginosa using gas chromatography–electron capture mass spectrometry. J Chromatogr B 664:458–462

    Article  CAS  Google Scholar 

  37. Lepine F, Milot S, Deziel E, He JX, Rahme LG (2004) Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom 15:862–869

    Article  CAS  Google Scholar 

  38. U.S. Department of Health and Human Services, Food and Drug Administration (2001) Guidance for Industry: Bioanalytical Method Validation

  39. Chhabra SR, Stead P, Bainton NJ, Salmond GPC, Stewart GSAB, Williams P, Bycroft BW (1993) Autoregulation of carbpenem biosynthesis in Erwinia carotovora by analogs of N-(3-oxohexanoyl-l-homoserine lactone. J Antibiot 46:441–454

    CAS  Google Scholar 

  40. Chhabra SR, Harty C, Hooi DSW, Daykin M, Williams P, Pritchard DI, Bycroft BW (2003) Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-l-homoserine lactone as immune modulators. J Med Chem 46:97–104

    Article  CAS  Google Scholar 

  41. Beatson SA, Whitchurch CB, Semmler ABT, Mattick JS (2002) Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. J Bacteriol 184:3598–3604

    Article  CAS  Google Scholar 

  42. Aendekerk S, Diggle SP, Song Z, Høiby N, Cornelis P, Williams P, Cámara M (2005) The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151:1113–1125

    Article  CAS  Google Scholar 

  43. Ombaka EA, Cozens RM, Brown MR (1983) Influence of nutrient limitation of growth on stability and production of virulence factors of mucoid and nonmucoid strains of Pseudomonas aeruginosa. Rev Infect Dis 5:S880–888

    Google Scholar 

  44. Chugani S, Greenberg EP (2010) LuxR-homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 107:10673–10678

    Article  CAS  Google Scholar 

  45. Farrow JM 3 rd, Pesci EC (2007) Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J Bacteriol 189:3425–33

    Article  CAS  Google Scholar 

  46. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P and Cámara M (2010) Quinolones: from antibiotics to autoinducers FEMS Microbiology Reviews 1–28. doi:10.1111/j.1574-6976.2010.00247

  47. McGrath S, Wade DS, Pesci EC (2004) Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS) FEMS. Microbiol Lett 230:27–34

    Article  CAS  Google Scholar 

  48. Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC (2005) Regulation of Pseudomonas Quinolone Signal Synthesis in Pseudomonas aeruginosa. J Bacteriol 187:4372–4380

    Article  CAS  Google Scholar 

  49. Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:13904–13909

    Article  CAS  Google Scholar 

  50. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480

    Article  CAS  Google Scholar 

  51. Déziel E, Lépine F, Milot S, He JX, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344

    Article  Google Scholar 

  52. Eberl L (2006) Quorum sensing in the genus Burkholderia. Int J Med Microbiol 296:103–110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Alex Truman for the synthesis of AHLs and AQs and Christian Pustelny for making the site-directed mutants rhlI lasI double mutant and the las I rhlI pqsA triple mutant of PAO1. This study was supported by grants from the UK Biotechnology and Biological Sciences Research Council (Grant number BB/D007038/1) and the EU QUORMETAB project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Barrett.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortori, C.A., Dubern, JF., Chhabra, S.R. et al. Simultaneous quantitative profiling of N-acyl-l-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Anal Bioanal Chem 399, 839–850 (2011). https://doi.org/10.1007/s00216-010-4341-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4341-0

Keywords

Navigation