Skip to main content
Log in

Experimental and density functional study on electronic structure and electronic circular dichroism of the phenylpyrazole insecticides enantiomers and the probable chiral catabolites

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The stable conformations of three phenylpyrazole insecticides enantiomers and their probable chiral catabolites, marked A, B, C, a, b and c, are identified via Monte Carlo searching with the MMFF94 molecular mechanics force field. The electronic circular dichroism of flufiprole (A) and ethiprole (B) was recorded. Moreover, the DFT method is utilized to optimize for the searched conformers. Then, the electronically excited states involving the first 30 excited states were computed using the time-dependent density functional theory method. The conformations selected to investigate in this article were the most stable conformers, and the UV and ECD spectra were in accord with the experimental values. The delocalized transition between benzene ring and pyrazole groups causes the strong absorptions of the electronic transitions at the UV–visible range. Three bands appear in the ECD spectra, in which the lower-energy ECD band is a delocalized π py → π ph* electronic transition. In addition, the higher and highest energy bands originate from the localized π ph → π ph* electronic transition. The calculated UV and ECD spectra were in good accordance with reported experimental values. Since the ECD spectrum at the B3LYP/6-311++G** level is indistinctively different from that at the B3LYP/6-31+G* level, it is necessary for the diffuse functions to be added to the 6-311++G** basis set, especially considering the solvent effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Klussmann M, Iwamura H, Mathew SP, Wells DH, Pandya U, Armstrong A, Blackmond DG (2006) Nature 441:621–623

    Article  CAS  Google Scholar 

  2. Matthews SJ, McCoy C (2003) Clin Ther 25:342–395

    Article  CAS  Google Scholar 

  3. Doki K, Hayakawa T, Lin W, Yanaguimoto H, Ding G, Inotsume N (2003) J Pharm J Pharmacol 55:1091–1097

    Article  CAS  Google Scholar 

  4. Jasat A, Dolphin D (1997) Chem Rev 97:2267–2340

    Article  CAS  Google Scholar 

  5. Hembury GA, Borovkov VV, Inoue Y (2008) Chem Rev 108:1–73

    Article  CAS  Google Scholar 

  6. Bruckner C, Gotz DC, Fox SP, Ryppa C, McCarthy JR, Bruhn T, Akhigbe J, Banerjee S, Daddario P, Daniell HW (2011) J Am Chem Soc 133:8740–8752

    Article  Google Scholar 

  7. Formaggio F, Peggion C, Crisma M, Kaptein B, Broxterman QB, Mazaleyrat JP, Wakselman M, Toniolo C (2004) Chirality 16:388–397

    Article  CAS  Google Scholar 

  8. Dutot L, Wright K, Gaucher A, Wakselman M, Mazaleyrat JP, Zotti MD, Peggion C, Formaggio F, Toniolo C (2008) J Am Chem Soc 130:5986–5992

    Article  CAS  Google Scholar 

  9. Tanasova M, Vasileiou C, Olumolade OO, Borhan B (2009) Chirality 21:374–382

    Article  CAS  Google Scholar 

  10. Jiang D, Zheng X, Shao G, Ling Z, Xu H (2014) J Agric Food Chem 62:3577–3583

    Article  CAS  Google Scholar 

  11. Caboni P, Sammelson RE, Casida JE (2003) J Agric Food Chem 51:7055–7061

    Article  CAS  Google Scholar 

  12. Lei Z, Wang J, Mao G, Wen Y, Tian Y, Wu H, Xu H (2014) J Agric Food Chem 62:6065–6071

    Article  CAS  Google Scholar 

  13. Yang W, Wu HX, Xu HH, Hu AL, Lu ML (2011) J Agric Food Chem 59:12534–12542

    Article  CAS  Google Scholar 

  14. Gou GZ, Zhou B, Shi L, Xu SJ, Yan HP, Liu W, Mang CY (2015) Indian J Chem A 54(8):1017–1025

    Google Scholar 

  15. Gou GZ, Zhou B, Shi L, Chi SM, Chen XL, Liu W (2015) Chin J Chem Phys. doi:10.1063/1674-0068/28/cjcp1503045 (to be published)

    Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09W revision A.02. Gaussian Inc, Wallingford, CT

    Google Scholar 

  17. Niehaus TA, March NH (2010) Theor Chem Acc 125:427–432

    Article  CAS  Google Scholar 

  18. Mang CY, Liu CP, Liu GM, Jiang B, Lan H, Wu KC, Zhao Y (2015) Spectrochim Acta A 136:1401–1408

    Article  CAS  Google Scholar 

  19. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  20. Stener M, Toffoli D, Fronzoni G, Decleva P (2007) Theor Chem Acc 117:943–956

    Article  CAS  Google Scholar 

  21. Aviles-Moreno JR, Urena Horno E, Partal Urena F, Lopez Gonzalez JJ (2011) Spectrochim Acta A 79:767–776

    Article  CAS  Google Scholar 

  22. Mang CY, Liu CP, Wu KC (2012) Mol Phys 110:1453–1460

    Article  CAS  Google Scholar 

  23. Mang CY, Zhao Y, Li HF, Lan H, Yan Y, Yang MH (2015) Mol Phys 113:104–112

    Article  CAS  Google Scholar 

  24. Nugroho AE, Morita H (2014) J Nat Med 68:1–10

    Article  CAS  Google Scholar 

  25. Li XC, Ferreira D, Ding Y (2010) Curr Org Chem 14:1678–1697

    Article  CAS  Google Scholar 

  26. Song JW, Tsuneda T, Sato T, Hirao K (2011) Theor Chem Acc 130:851–857

    Article  CAS  Google Scholar 

  27. Bang JN, Bohr HG (2010) Theor Chem Acc 125:555–568

    Article  CAS  Google Scholar 

  28. Abashkin Y, Russo N, Toscano M (1995) Theoret Chim Acta 91:179–186

    Article  CAS  Google Scholar 

  29. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  30. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4450

    Article  CAS  Google Scholar 

  31. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8225

    Article  CAS  Google Scholar 

  32. Belcastro M, Marino T, Russo N, Toscano M (2006) Theor Chem Acc 115:361–369

    Article  CAS  Google Scholar 

  33. Leopoldini M, Marino T, Russo N, Toscano M (2004) Theor Chem Acc 111:210–216

    Article  CAS  Google Scholar 

  34. Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Springer Science & Business Media, New York

    Book  Google Scholar 

  35. Klamt A, Schürmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  36. Klamt A (1995) J Phys Chem 99:2224–2235

    Article  CAS  Google Scholar 

  37. Mang CY, Gou GZ, Liu CP, Wu KC (2011) Acta Chim Sin 4:131–138

    Google Scholar 

  38. Deppmeier BJ, Driessen AJ, Hehre TS, Hehre WJ, Johnson JA, Klunzinger PE, Pople JA (2002) SPARTAN 02. Wavefunction. Inc., Irvine, CA

    Google Scholar 

  39. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  40. Amesty A, Burgueño-Tapia E, Joseph-Nathan P, Ravelo AG, Estévez-Braun A (2011) J Nat Prod 74(5):1061–1065

    Article  CAS  Google Scholar 

  41. Gutiérrez-Nicolás F, Gordillo-Román B, Oberti JC, Estévez-Braun A, Ravelo AG, Joseph-Nathan P (2012) J Nat Prod 75(4):669–676

    Article  Google Scholar 

  42. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  43. Becke AD (1993) J Chem Phys 9:5648–5652

    Article  Google Scholar 

  44. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  45. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2262

    Article  CAS  Google Scholar 

  46. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3666

    Article  CAS  Google Scholar 

  47. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–655

    Article  CAS  Google Scholar 

  48. Miertuš S (1981) Scrocco E Tomasi. J Chem Phys 55:117–129

    Google Scholar 

  49. Mennucci B, Cances E, Tomasi J (1997) J Phys Chem B 101:10506–10517

    Article  CAS  Google Scholar 

  50. Cao WQ, Lu F, Yu YJ, Wu YP, She YX, Wang J (2011) Environ Chem 5:946–952

    Google Scholar 

  51. Huang YJ, Guo LF, Huang XH, Xu Y (2009) Pesticides 48:42–43

    CAS  Google Scholar 

  52. Wu ZP, Gao W, Yan CR, Zhang XQ (2006) Modern Agrochem 5:21–23

    CAS  Google Scholar 

  53. Tian M, Zhang Q, Shi H, Gao B, Hua X, Wang M (2015) Anal Bioanal Chem 407(12):3499–3507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the Natural Science Foundation of China (NSFC) (Nos. 61361002, 21262049), the “Chun Hui” Plan of Chinese Ministry Education (No. Z2011125), the Scientific Research Foundation of Education Department of Yunnan Province (No. 2013FZ121), the Youth Program of Yunnan Province (No. 2014FD054), the General Program of Yunnan Provincial Education Department (No. 2015Y455), the Chemistry of Key Construction Disciplines for Master Degree Program in Yunnan (No. HXZ1303) and the Educational Reform Program of Hong He University (No. JJJG1412).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gao-Zhang Gou or Wei Liu.

Additional information

Published as part of the special collection of articles “Health & Energy from the Sun”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, GZ., Zhou, B., Shi, L. et al. Experimental and density functional study on electronic structure and electronic circular dichroism of the phenylpyrazole insecticides enantiomers and the probable chiral catabolites. Theor Chem Acc 135, 137 (2016). https://doi.org/10.1007/s00214-016-1892-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1892-y

Keywords

Navigation