Skip to main content
Log in

Transition state localization by a density functional method. Applications to isomerization and symmetry-forbidden reactions

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

A new transition state algorithm incorporated into the density functional code deMon, has been used to study thetranscis-hydroxymethylene andtrans-hydroxymethylene → formaldehyde isomerization processes and to localize the transition state for the decomposition of 1,3-diazacyclobutane to methyleneimine. Calculations have been performed using both local (LSD) and nonlocal spin density (NLSD) gradient-corrected approximations. Two different basis sets of small and large size have been used for the study in order to analyze the effect of the basis set dimension other than that of the nonlocal corrections on the activation energy barrier value. The results seem to confirm that density functional methods can be considered practical and reliable tools for the localization of transition states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan L, Ziegler T (1990) J Chem Phys 92:3645

    Google Scholar 

  2. Fan L, Ziegler T (1992) J Am Chem Soc 114:10890

    Google Scholar 

  3. Amsterdam Density Functional System (ADF), Department of Theoretical Chemsitry, Vrije Universiteit, Amsterdam, The Netherlands. Baerends EJ, Ros P (1978) Int J Quantum Chem S12: 169

    Google Scholar 

  4. Stanton RV, Merz KM Jr (1994) J Chem Phys 100:434

    Google Scholar 

  5. Abashkin Y, Russo N (1994) J Chem Phys 100:4477

    Google Scholar 

  6. St-Amant A (1992) PhD thesis, Université de Montréal

  7. Abashkin Y, Russo N, Toscano M (1994) Int J Quantum Chem 52:695

    Google Scholar 

  8. McIver JW, Komornicki A (1972) J Am Chem Soc 94:2625

    Google Scholar 

  9. Bell S, Crighton JS (1984) J Chem Phys 80: 2464 and references therein

    Google Scholar 

  10. Banerjee A, Adams N, Simons J, Shepard R (1985) J Phys Chem 89:52

    Google Scholar 

  11. Cummins PL, Gready JE (1989) J Comput Chem 10:939

    Google Scholar 

  12. Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225

    Google Scholar 

  13. Rothman MJ, Lohr LL (1980) Chem Phys Lett 70:405

    Google Scholar 

  14. Muller K, Brown LD (1979) Theoret Chim Acta 55:75

    Google Scholar 

  15. Dewar MJS, Healy EF, Stewart JJP (1983) J Chem Soc 87:2745

    Google Scholar 

  16. Cerjan CJ, Miller WH (1981) J Chem Phys 75:2800

    Google Scholar 

  17. Simons J, Jorgensen P, Taylor H, Ozment J (1983) J Phys Chem 87:2745

    Google Scholar 

  18. Jorgensen P, Jensen HJA, Helgaker T (1988) Theoret Chim Acta 73:55

    Google Scholar 

  19. Vosko SH, Wilk L, Nusaiz M (1980) Can. J. Phys. 58:1200

    Google Scholar 

  20. Pezdew JP, Wang Y (1986) Phys Rev B33:8800; Pezdew JP (1986) Phys. Rev. B33:8822

    Google Scholar 

  21. Broyden CC (1970) J Inst Math Appl 6:76

    Google Scholar 

  22. Fletcher R (1970) Comput J 13:317

    Google Scholar 

  23. Goldfarb D (1970) Math Comput 24:23

    Google Scholar 

  24. Shanno DF (1970) Math Comput 24:547

    Google Scholar 

  25. Callomon JH, Hirota E, Kuchitsu K, Lafferty WJ, Maki AG, Pote CS (1976) In: Hellewege KH, Hellewege AM (eds) Structure data on free polyatomic molecules, Landolt-Bornstein, New Series, Group II, vol 7. Springer, Berlin

    Google Scholar 

  26. Hehre WJ, Radom L, Schleyer PvR Pople JA (1986) In:Ab initio molecular orbital theory. Wiley, New York and references therein.

    Google Scholar 

  27. Kamiya K, Morokuma K (1991) J Chem Phys 94:7287

    Google Scholar 

  28. Goddard JD, Yamaguchi Y, Schaefer III, HF (1981) J Chem Phys 75:3459

    Google Scholar 

  29. Deng L, Ziegler T, Fan L (1993) J Chem Phys 99:3823

    Google Scholar 

  30. Becke AD (1988) Phys Rev A38:3098

    Google Scholar 

  31. Pau CF, Hehre WJ (1982) J Phys Chem 86:1252

    Google Scholar 

  32. Saxon RP, Yoshimine M (1989) J Phys Chem 93:3130

    Google Scholar 

  33. Grodzicki M, Seminario JM, Politzer P (1990) Theoret Chim Acta 77:359

    Google Scholar 

  34. Grodzicki M, Seminario JM, Politzer P (1991) J Chem Phys 94:1668

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abashkin, Y., Russo, N. & Toscano, M. Transition state localization by a density functional method. Applications to isomerization and symmetry-forbidden reactions. Theoret. Chim. Acta 91, 179–186 (1995). https://doi.org/10.1007/BF01114985

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114985

Keywords

Navigation